

MORE THAN BEAM PROFILING – A NEW APPROACH FOR BEAM DIAGNOSTICS IN 3D ADDITIVE MANUFACTURING SYSTEMS

8. Primes Workshop 11.09.2018

State of the art devices

- space constraints
- central position and vertical beam
- need cooling
- "only" laser beam analysis

http://www.optotune.com

- beam diameter 🗸
- position / marking speed
- propagation parameters (M², z_R , θ) \checkmark
- local power density distribution
- pincushion distortion
- localized thermal lensing
- flat field/inclination
- field overlap

WORKING PRINCIPLE

Relative temporal spacing and peak-widths allows determination of

- marking speed
- scan vector properties
 - direction
 - length
 - absolute position
- beam width in x/y
- 1D integrated beam distribution

ScanFieldMonitor – LAB PROTOTYPE

Laboratory Prototype

- absolute referenced in xyz (< 50 μm)
- ~ 12 x 9 x 9 cm³
- probe: 5 mm edge length

Laboratory Setup

- 400 W single mode fiber laser
- IntelliScan20
- fθ lens system (f = 420 mm)
- 5 x 5 doweled measuring positions

- beam diameter
- position / marking speed
- propagation parameters (M², z_R , θ)
- local power density distribution
- pincushion distortion
- localized thermal lensing
- flat field / inclination
- field overlap

IMMEDIATE MEASURANDS

measured vectors programmed vectors −0, (0,0)H −1, (0,0)V Position Y in mm Integrated beam Position X in mm

> results:

	0	1
theta in rad	0,00025	1,57031
theta in °	0,01459	89,97239
v in m/s	0,09927	0,09866
w _x in μm	79,65921	
wy in µm		77,52554
x _m in mm	-0,23603	-0,22999
y _m in mm	-0,11843	-0,13026
x _{Mess,i} in mm	-5,19347	-0,23237
yMess,i in mm	-0,11969	-5,05730
XMess,f in mm	2,24269	-0,22881
yMess,f in mm	-0,11779	2,33327
L _{Mess} in mm	7,43616	7,39057

SINGLE PLANE ANALYSIS

DELAY-TIME ANALYSIS

- identical vector with increasing speed
- start- and endpoint variation due to timing errors

- beam diameter
- position / marking speed
- propagation parameters (M², z_R , θ)
- local power density distribution
- pincushion distortion
- localized thermal lensing
- flat field / inclination
- field overlap

CAUSTIC MEASUREMENT

- Measure beam parameters in different z-Positions
- Good agreement with reference device, PRIMES MSM

Waist as a function of z-position Velocity as a function of z-position \rightarrow Focal plane \neq v_{set}-plane

More than beam profiling - A new approach for beam diagnostics in 3D additive manufacturing systems

Parameters in question (DIN 35224/ISO/ASTM CD 52903-2)

- beam diameter
- position / marking speed
- propagation parameters (M², z_R, θ)
- local power density distribution
- pincushion distortion
- localized thermal lensing
- flat field / inclination
- field overlap

© PRIMES 2018

MULTIPLE VECTORS AT DIFFERENT POSITIONS

- Measuring vectors at different positions
- 1D integrated beam distribution for each position
- Reconstruction of pincushion distortion possible

© PRIMES 2018 More than beam profiling – A new approach for beam diagnostics in 3D additive manufacturing systems

TIME RESOLVED FOCAL SHIFT ANALYSIS

- repeated scan over pattern with 20 W and 400 W
- measuring frequency: ~ 100 Hz

Parameters in question (DIN 35224/ISO/ASTM CD 52903-2)

- beam diameter
- position / marking speed
- propagation parameters (M², z_R , θ)
- local power density distribution
- pincushion distortion
- localized thermal lensing
- flat field / inclination
- field overlap

focal plane

MULTIPLE VECTORS AT DIFFERENT POSITIONS

- Measuring caustics at different positions
- Beam parameters for each position
- Reconstruction of flat field/inclination possible

- beam diameter
- position / marking speed
- propagation parameters (M², z_R , θ)
- local power density distribution
- pincushion distortion
- localized thermal lensing
- flat field / inclination
- field overlap

FIELD OVERLAP

- Multi scanner system
- Measurement in overlapping region
- Beam incidence ±20°
- Coarse correction already yields
 improved overlap

- beam diameter 🗸
- position / marking speed ✓
- propagation parameters (M², z_R , θ)
- local power density distribution
- pincushion distortion \checkmark
- localized thermal lensing \checkmark
- flat field/inclination
- field overlap

ScanFieldMonitor

Preliminary technical specifications

- power density:
 < 100 MW/cm²
- scanning speed: < 10 m/s
- angle of incidence: < ± 20°
- position accuracy: < 50 μm
- dimensions: ~ 12 x 9 x 9 cm³

Suitable for more than 3D printing e.g. remote welding

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

SPONSORED BY THE

PRIMES GmbH | Max-Planck-Str. 2 | 64319 Pfungstadt | Germany | primes.de

