# PRIMES COMPETENCE IN BEAM DIAGNOSTICS



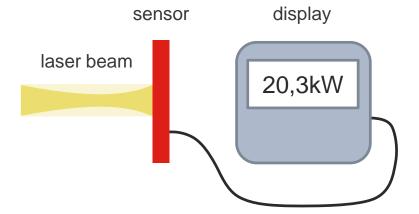
## MEASURING LASER POWER -BETWEEN FLEXIBILITY AND MACHINE INTEGRATION

PRIMES GmbH Pfungstadt 11.09.2018





- 1. Power measurement the oldest trick in the book...
- 2. ... with some open questions and decisions to make
- 3. Technology aspects
- 4. Outlook




## WHY MEASURING POWER – THE OLDEST TRICK IN THE BOOK

- Quality assurance
- Determine service intervals
- Standardize processes
- Facilitate the exchange of a beam source
- Save money

## Cheapest sensor technology

### How accurate?





## UNCERTAINTY OF MEASUREMENT – THE PTB

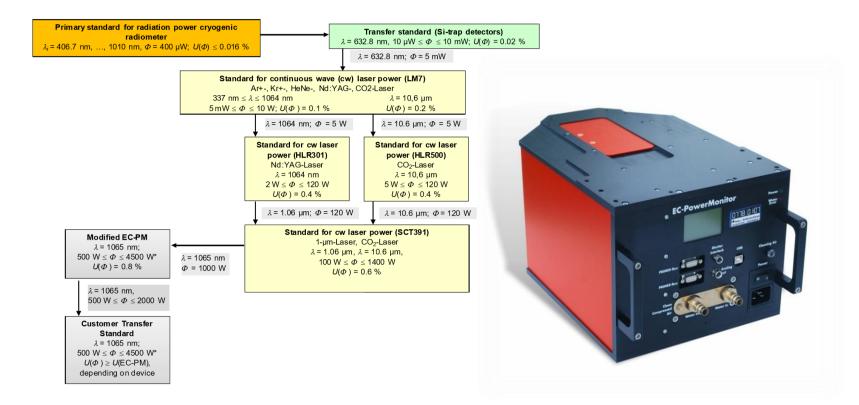
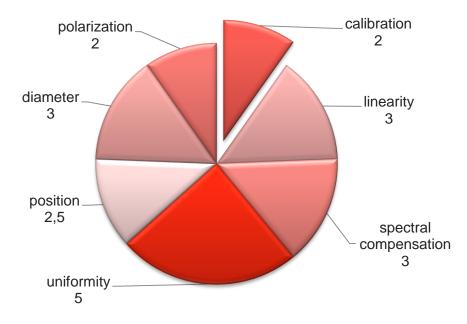
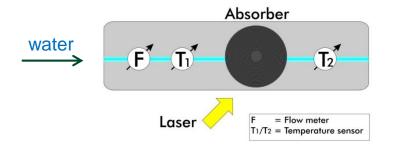
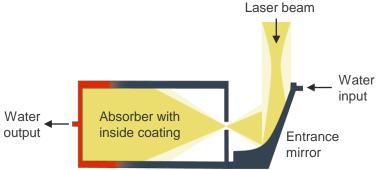




Image property of the Physikalisch Technische Bundesanstalt PTB

## UNCERTAINTY OF MEASUREMENT -INFLUENCE OF OTHER LASER PARAMETERS




### Contribution to Uncertainty of Measurement / %




How to eliminate all these contributions?

## WHY PRIMES IS BUILDING CALORIMETERS SINCE >20 YEARS

$$P = \dot{m} \cdot c_p \cdot \Delta T; \text{ genauer } \int_{T_1}^{T_2} \dot{m} \cdot c_p(T) dT$$





### Advantages (Ulbricht sphere):

- Position independence
- Diameter independence
- · Wavelength independence
- Absorption >99%
- High intensity
- · Robust, industry approved
- Long term stability
- Laser safety

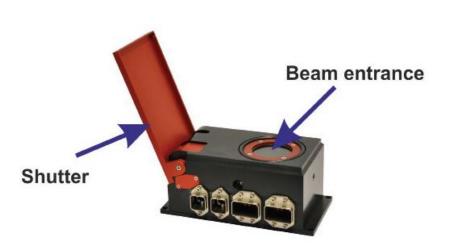
PRIMES

## NOT EVERYONE LIKES WATER COOLING

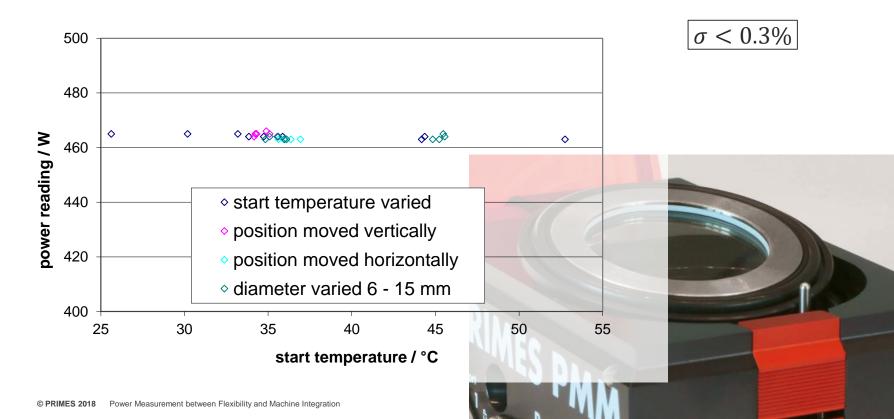




### CALORIMETER – PASSIVE COOLING




 $\Delta Q = m \cdot c_p(T) \cdot (T_{End} - T_{Start})$ 


 $P = \frac{\Delta Q}{\Delta t}$ 

- P = Power
- $\Delta Q$  = energy increase (heat)
- $\Delta t$  = Irradiation time
- $C_p(T)$  = specific heat capacity of absorber
- *m* = mass of absorber

Discontinuous / Ballistic: T, t



## INDEPENDENCE FROM OTHER BEAM PARAMETERS



PRIMES

## THE APPLICATION DETERMINES THE POWER SENSOR – Cube M

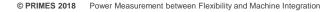




© PRIMES 2018 Power Measurement between Flexibility and Machine Integration

## THE APPLICATION DETERMINES THE POWER SENSOR – PowerMeasuringModule PMM

PROFI


PROF

### **Production line:**

- Fast
- Fully automatic / no operator
- Protection against dust/particles
- Rugged, reliable
- Fieldbus for easy integration into existing hardware and software

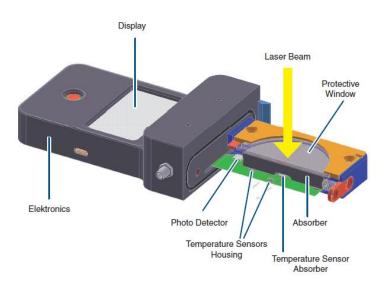






Culink

Ether**CAT** 


**PRIMES** 

## THE APPLICATION DETERMINES THE POWER SENSOR - PowerMeasuringCassette PMC



#### Cassette for focusing head:

- Confined space
- Easy handling



#### Characteristics

- Thermally insulated absober plate
- Protection glass
- Photodetector measures laser pulse duration
- Interlock for laser

### **Technical Data**

| • | Max. power density for absorber: | 1.5 kW/cm <sup>2</sup> |
|---|----------------------------------|------------------------|
| • | Max. beam diameter on absorber:  | 30 mm                  |
| • | Irradiation time:                | 0.1 - 1.0 sec          |
| • | Laser power:                     | 100 – 8,000 W          |
| • | Wavelength:                      | 800 – 1090 nm          |
| • | Accuracy:                        | ±3%                    |
| • | Reproducibility:                 | ±1%                    |
| • | Nominal measuring frequency:     | 1 cycle/min            |

### CASSETTE APPLICATIONS

Trumpf CFO 50



Source: Trumpf GmbH



Source: Trumpf GmbH

Trumpf BEO 70





Source: Precitec GmbH & Co. KG



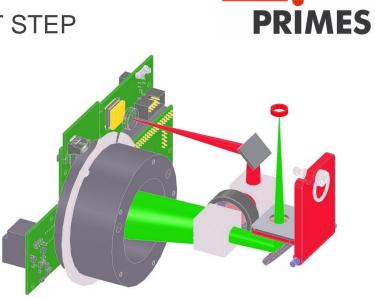


Scansonic ALO3



Source: Scansonic IPT GmbH








## POWER MEASUREMENT: THE NEXT STEP FocusParameterMonitor FPM

Laser beam





Beam Profile + Power in the Tool Center Point in 0.3 seconds

### COMBINATIONS WITH POWER



#### Power plus

water cooling cassette microlens array bluetooth laser-on time fieldbus beam profile

- = permanent beam dump
- = compact, easy handling
- = indepencence of angle and small beam diameter
- = measurement in a cabin without cable
- = large dynamic range
- = machine integration
- = power density on the workpiece



Quality assurance using power meters

Independence from other laser parameters through the use of a calorimeter

The application determines the right sensor

Combine power measurements with other quantities for additional benefits



## THANK YOU FOR YOUR ATTENTION

PRIMES GmbH Pfungstadt 11.09.2018

PRIMES GmbH | Max-Planck-Str. 2 | 64319 Pfungstadt | Germany | www.primes.de

