

Originalbetriebsanleitung

LaserQualityMonitor LQM+

LQM+ 20, LQM+ 200/500, LQM+ HP (10/20 kW) LaserDiagnosticsSoftware LDS

WICHTIG!

VOR DEM GEBRAUCH SORGFÄLTIG LESEN.

ZUR SPÄTEREN VERWENDUNG AUFBEWAHREN.

Inhaltsverzeichnis

1	Grundlegende Sicherheitshinweise			
2	Symbolerklärung			
3	Über diese Betriebsanleitung			
4	Bedin	ngungen am Einbauort	10	
5	Einlei	itung	10	
	5.1	Systembeschreibung		
	5.2	Messprinzip	12	
	5.3	Kurzübersicht Installation	13	
6	Trans	sport	14	
7	Monta	age	14	
	7.1	Vorbereitung und Einbaulage	14	
	7.2	LaserQualityMonitor LQM+ manuell ausrichten	15	
		7.2.1 Ausrichthilfe		
		 7.2.2 Manuelle Ausrichtung des LQM+ 20 Basisgerates und des LQM+ 200/50 1. Vorstufo 	JU MIT	
		7.2.3 Feiniustage an der 1 Vorstufe	10	
	7.3	LaserQualityMonitor LQM+ montieren		
		7.3.1 LQM+ 20/200/500 ohne Bodenplatte montieren	17	
		7.3.2 LQM+ 200/500 mit Bodenplatte montieren	18	
		7.3.3 LQM+ HP mit Bodenplatte montieren	19	
8	Kühlk	kreis anschließen (nur LQM+ HP und LQM+ 500)	20	
	8.1	Wasserqualität	20	
	8.2	Wasserdruck	20	
	8.3	Luftfeuchtigkeit		
	8.4	Wasseranschlusse und Wasserdurchflussmenge 8.4.1 LOML HP (10 kW und 20 kW)		
		8.4.1 LQNI+TIF (10 KW 010 20 KW)	22 22	
		8.4.3 Verschlussstopfen der Wasseranschlüsse entfernen		
9	Elektr	rischer Anschluss	24	
	91	Anschlüsse	24	
	9.2	Pinbeleauna		
	0.2	9.2.1 Spannungsversorgung		
		9.2.2 Eingang externer Trigger	25	
		9.2.3 Ausgang interner Trigger	25	
	9.3	Sicherheitseinrichtungen	26	
		9.3.1 Überwachung des seitlichen Zugangs zu Messobjektiv und Neutralglasfil	ter26	
		9.3.2 Temperaturkontrolle		
	0.4	9.3.3 Externer Sicherheitskreis (Safety Interlock)		
10	9.4 Statu	Anschluss an den PC und Stromversorgung anschlieben	28ے	
10	Status		29	
11	Mess		30	
	11.1	Auswahl und Wechsel der Messohiektive und des Neutralalasfilters	ວບ ຊ1	
	11.4	11.2.1 Auswahl des Messobiektivs		
		11.2.2 Wechsel des Messobjektivs oder des Neutralalasfilters		
		11.2.3 Neutralglasfilter		

	11.3	LaserQualityMonitor LQM+ mit der LaserDiagnosticsSoftware LDS verbinden	
		11.3.1 Geral verbinderi	
	11 /	LaserQualityMonitor LOM+ mit der LaserDiagnosticsSoftware LDS ausrichten	
	11.4	11 / 1 Messmodule Strahllage wählen	
		11.4.7 Strahleuche starten	
		11.4.3 Strahllagenstabilität protokollieren	
		1144 Wird der Laserstrahl nicht gefunden	
	11.5	Automatische Kaustikmessung durchführen	40
	11.0	11.5.1 Messmodus Automatische Kaustik wählen	40
		11.5.2 Einstellungen vornehmen (Gerätesteuerung > Einstellungen)	
		11.5.3 Erweiterte Einstellungen vornehmen (Gerätesteuerung > Erweitert)	41
		11.5.4 Automatische Kaustikmessung starten	42
		11.5.5 Anzeige der Messergebnisse	42
	11.6	Leistungsmessung durchführen	43
		11.6.1 Messmodus Leistungsmessung wählen	43
		11.6.2 Einstellungen vornehmen (<i>Gerätesteuerung</i>)	44
		11.6.3 Leistungsmessung starten	44
		11.6.4 Anzeige der Messergebnisse	45
12	Fehle	erbehebung	46
13	Wart	ung und Inspektion	47
14	Lage	erung	47
15	Мав	nahmen zur Produktentsorgung	47
16	Konf		
10	KUIII	onnitatserkiarung	40
17	Tech	nische Daten	49
18	Abm	essungen	50
	18.1	LQM+ 20	50
	18.2	LQM+ 200/500 (ohne Bodenplatte)	51
	18.3	LQM+ HP	52
19	Anha	ang	53
	19.1	Ändern der Werkseinstellung am LQM+ 20/200UV	53
	19.2	HighYAG-Kollimationsmodul bis 6 kW	55
		19.2.1 Kenndaten des Kühlsystems für das HighYAG-Kollimationsmodul	56
		19.2.2 Schema des Kühlkreises für das HighYAG-Kollimationsmoduls	56
		19.2.3 HighYAG-Kollimationsmodul demontieren/montieren	57
		19.2.4 Auswahl des Messobjektivs bei einem montierten HighYAG-Kollimationsmodu	ul58
	19.3	IPG-Kollimationsmodul bis 20 kW	60
		19.3.1 Mögliche Kombinationen des LaserQualityMonitor LQM+ HP (20 kW) mit IPG Kollimatoren	- 61
		19.3.2 Verwendung der Messobiektive 1:1 und 5:1	
		19.3.3 Maximale Leistung	
	19.4	Optischer Pfad im LQM+ HP (mit IPG-Kollimator)	63
20	Form	eln und Algorithmen zur Rohstrahlrückberechnung	64

PRIMES - das Unternehmen

PRIMES ist ein Hersteller von Messgeräten zur Laserstrahlcharakterisierung. Diese Geräte werden zur Diagnostik von Hochleistungslasern eingesetzt. Das reicht von CO₂-Lasern über Festkörperlaser bis zu Diodenlasern. Der Wellenlängenbereich von Infrarot bis nahe UV wird abgedeckt. Ein großes Angebot von Messgeräten zur Bestimmung der folgenden Strahlparameter steht zur Verfügung:

- Laserleistung
- Strahlabmessungen und die Strahllage des unfokussierten Strahls
- Strahlabmessungen und die Strahllage des fokussierten Strahls
- Beugungsmaßzahl M²

Entwicklung, Produktion und Kalibrierung der Messgeräte erfolgt im Hause PRIMES. So werden optimale Qualität, exzellenter Service und kurze Reaktionszeit sichergestellt. Das ist die Basis, um alle Anforderungen unserer Kunden schnell und zuverlässig zu erfüllen.

PRIMES GmbH Max-Planck-Str. 2 64319 Pfungstadt Deutschland

Tel +49 6157 9878-0 info@primes.de www.primes.de

1 Grundlegende Sicherheitshinweise

Bestimmungsgemäße Verwendung

Der LaserQualityMonitor LQM+ ist ausschließlich dazu gebaut, Messungen im oder in der Nähe des Strahlengangs von Hochleistungslasern durchzuführen. Hierbei sind die im Kapitel 17, "Technische Daten", auf Seite 49 angegebenen Spezifikationen und Grenzwerte einzuhalten. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß. Für eine sachgemäße Anwendung des Gerätes müssen unbedingt die Angaben in dieser Betriebsanleitung beachtet werden.

Das Benutzen des Gerätes für nicht vom Hersteller spezifizierten Gebrauch ist strikt untersagt. Das Gerät kann dadurch beschädigt oder zerstört werden. Zudem besteht eine erhöhte gesundheitliche Gefährdung bis hin zu tödlichen Verletzungen. Das Gerät darf nur in der Art und Weise eingesetzt werden, aus der keine potentielle Gefahr für Menschen entsteht.

Das Gerät selbst emittiert keine Laserstrahlung. Jedoch wird während der Messung der Laserstrahl auf das Gerät geleitet. Dabei entsteht reflektierte Strahlung (Laserklasse 4). Deshalb sind die geltenden Sicherheitsbestimmungen zu beachten und erforderliche Schutzmaßnahmen zu treffen.

Im Messbetrieb muss der externe Sicherheitskreis (Safety Interlock) der Lasersteuerung mit dem Gerät verbunden sein.

Geltende Sicherheitsbestimmungen beachten

Beachten Sie die nationalen und internationalen Bestimmungen und Normen von ISO/CEN sowie die Vorschriften der Berufsgenossenschaft. Nationale Grundlage der Sicherheitsbestimmungen ist die Arbeitsschutzverordnung zu künstlicher optischer Strahlung (OstrV) und darauf basierend die Technischen Regeln zur Arbeitsschutzverordnung zu künstlicher optischer Strahlung (TROS Laserstrahlung).

Erforderliche Schutzmaßnahmen treffen

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM+ darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

Beachten Sie die folgenden Schutzmaßnahmen.

Wenn sich Personen in der Gefahrenzone sichtbarer oder unsichtbarer Laserstrahlung aufhalten, z. B. an nur teilweise abgedeckten Lasersystemen, offenen Strahlführungssystemen und Laserbearbeitungsbereichen, sind folgende Schutzmaßnahmen zu treffen:

- Schließen Sie den externen Sicherheitskreis (Safety Interlock) der Lasersteuerung an das Gerät an. Prüfen Sie die ordnungsgemäße Abschaltung des Lasers im Fehlerfall durch den externen Sicherheitskreis (Safety Interlock).
- Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- Je nach Laserquelle kann das Tragen von geeigneter **Schutzkleidung** oder **Schutzhandschuhen** notwendig sein.
- Schützen Sie sich vor direkter Laserstrahlung, Streureflexen sowie vor Strahlen, die durch die Laserstrahlung generiert werden (z. B. durch geeignete trennende Schutzeinrichtungen oder auch durch Abschwächung dieser Strahlung auf ein unbedenkliches Niveau).

- Verwenden Sie Strahlführungs- bzw. Strahlabsorberelemente, die keine gefährlichen Stoffe freisetzen sobald sie mit der Laserstrahlung beaufschlagt werden und die dem Laserstrahl hinreichend widerstehen können.
- Installieren Sie Sicherheitsschalter und/oder Notfallsicherheitsmechanismen, die das unverzügliche Schließen des Verschlusses am Laser ermöglichen.
- Befestigen Sie das Gerät stabil, um eine Relativbewegung des Gerätes zur Strahlachse des Lasers zu verhindern und somit die Gefährdung durch Streustrahlung zu reduzieren. Nur so ist eine optimale Performance während der Messung gewährleistet.

Qualifiziertes Personal einsetzen

Das Gerät darf ausschließlich durch Fachpersonal bedient werden. Das Fachpersonal muss in die Montage und Bedienung des Gerätes eingewiesen sein und grundlegende Kenntnisse über die Arbeit mit Hochleistungslasern, Strahlführungssystemen und Fokussiereinheiten haben.

Umbauten und Veränderungen

Das Gerät darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Das Gerät darf nicht geöffnet werden, um z. B. eigenmächtige Reparaturen auszuführen. Jede Veränderung schließt eine Haftung unsererseits für resultierende Schäden aus.

Haftungsausschluss

Der Hersteller und der Vertreiber der Messgeräte schließt die Haftung für Schäden oder Verletzungen jeder Art aus, die durch den unsachgemäßen Gebrauch der Messgeräte oder die unsachgemäße Benutzung der zugehörigen Software entstehen. Der Käufer und der Benutzer verzichten sowohl gegenüber dem Hersteller als auch dem Lieferanten auf jedweden Anspruch auf Schadensersatz für Schäden an Personen, materielle oder finanzielle Verluste durch den direkten oder indirekten Gebrauch der Messgeräte.

2 Symbolerklärung

Folgende Symbole und Signalwörter weisen auf mögliche Restrisiken hin:

GEFAHR

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

🚹 WARNUNG

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

Bedeutet, dass eine leichte Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

Bedeutet, dass Sachschaden entstehen **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Am Gerät selbst wird auf Gebote und mögliche Gefahren mit folgenden Symbolen hingewiesen:

ESD-gefährdete Bauteile

Vor Inbetriebnahme die Betriebsanleitung und die Sicherheitshinweise lesen und beachten!

Weitere Symbole, die nicht sicherheitsrelevant sind:

Hier finden Sie nützliche Informationen und hilfreiche Tipps.

Handlungsaufforderung

3 Über diese Betriebsanleitung

Diese Dokumentation beschreibt die Installation und Konfiguration des LaserQualityMonitor LQM+ und das Durchführen von Messungen mit der LaserDiagnosticsSoftware LDS.

Für den Messbetrieb des LaserQualityMonitor LQM+ muss auf dem PC die LaserDiagnosticsSoftware LDS installiert sein. Die LaserDiagnosticsSoftware LDS in der Basisversion ist im Gerätelieferumfang enthalten.

Eine ausführliche Beschreibung der Softwareinstallation, der Dateiverwaltung und Auswertung der Messdaten entnehmen Sie bitte der gesonderten Betriebsanleitung LaserDiagnosticsSoftware LDS.

4 Bedingungen am Einbauort

- Das Gerät darf nicht in kondensierender Atmosphäre betrieben werden.
- Die Umgebungsluft muss frei von organischen Gasen sein.
- Schützen Sie das Gerät vor Spritzwasser und Staub.
- Betreiben Sie das Gerät nur in geschlossenen Räumen.

5 Einleitung

5.1 Systembeschreibung

Der LaserQualityMonitor LQM+ dient zur Vermessung der Strahleigenschaften einer Strahlquelle entweder in einer Freistrahlmessung über mehrere Meter oder mit gesteckter Faser in einem Faserhalter oder Kollimator. Es können sowohl cw-Laser und mittels eines internen Triggers auch gepulste Laser vermessen werden.

Im LQM+ 20 Basisgerät sind die Elektronik sowie alle abbildenden optischen Komponenten verbaut. Das LQM+ 20 Basisgerät kann durch Vorsatzmodule mit Strahlteiler, Absorber und Justageeinheit ergänzt und in seiner Leistungsfähigkeit bis in den Multikilowattbereich gesteigert werden. Faseradapter, Kollimatoren, Neutralglasfiltereinsätze sowie zusätzliche Messobjektive sind bei Bedarf erhältlich.

Mit den integrierten Leistungsmessern in der ersten und zweiten Vorstufe (nur LQM+ 500 und LQM+ HP) kann zusätzlich die Laserleistung gemessen werden.

Abb. 5.1: Komponenten des LQM+ 20 Basisgerätes

Abb. 5.2: Komponenten des LQM+ 200/500

Abb. 5.3: Komponenten des LQM+ HP (10/20 kW)

5.2 Messprinzip

Die Charakterisierung eines kollimierten Laserstrahls erfordert aufgrund der sehr langen Messwege von drei bis sechs Rayleighlängen einen großen Messaufwand. Deshalb erzeugt der LaserQualityMonitor LQM+ eine geräteinterne kompakte Kaustik durch die Fokussierung des eingestrahlten kollimierten Laserstrahls mit einer Fokussieroptik. Dabei wird der fokussierte Laserstrahl über integrierte Prismen und OD-Filter abgeschwächt und mit einem Messobjektiv vergrößert auf dem CCD-Sensor abgebildet.

Durch das Verfahren der Prismen im Gerät und der wiederholten Messung der zweidimensionalen Leistungsdichteverteilung an verschiedenen Positionen, ermittelt die LaserDiagnosticsSoftware LDS Radius, Lage und Ausrichtung des Laserstrahls. Die elektronische Integrationszeitsteuerung des CCD-Sensors erweitert den Dynamikbereich des Systems. Dadurch ist ein Umbau der Filter während einer Messung im Allgemeinen nicht erforderlich.

Folgende Laserquellen können vermessen werden:

- Alle cw- und gepulsten Laserquellen im Wellenlängenbereich von 340 360 nm/515 545 nm/1 030 1 090 nm im mittleren Leistungsbereich von 1 mW bis in den Multikilowattbereich im M²-Bereich von 1 bis ca. 50.
- Der Strahldurchmesser an der Apertur des Messsystems kann bei einer Divergenz unter 10 mrad zwischen 1,5 mm und 15 mm (22 mm nur beim LQM+ HP 20 kW) variieren.

Abb. 5.4: Optischer Aufbau des LQM+ 20 Basisgerätes

Abb. 5.5: Messprinzip

5.3 Kurzübersicht Installation

1.	LaserDiagnosticsSoftware LDS auf dem PC installieren	Siehe gesonderte Be- triebsanleitung der
•	Die Software ist im Lieferumfang enthalten.	LaserDiagnosticsSoftware LDS
2.	Sicherheitsvorkehrungen treffen	Kapitel 1 auf Seite 7
3.	Montage vorbereiten (nur bei einer Freistrahlmessung)	Kapitel 7 auf Seite 14
•	Vorbereitungen treffen	
•	Einbaulage festlegen	
•	Gerät manuell ausrichten	
4.	Wasserkühlung anschließen (nur LQM+ HP und LQM+ 500)	Kapitel 8 auf Seite 20
•	Anschlussdurchmesser	
•	Durchflussrate beachten	
5.	Elektrischer Anschluss	Kapitel 9 auf Seite 24
•	Stromversorgung anschließen	
•	Externen Sicherheitskreis (Safety Interlock) verbinden	
6.	Mit dem PC verbinden	Kapitel 9.4 auf Seite 28
•	Über Ethernet oder LAN	
7.	Montage abschließen (nur bei einer Freistrahlmessung)	Kapitel 11.4 auf Seite 35
•	Gerät mit der LaserDiagnosticsSoftware LDS gemäß Kapitel 11.4 auf Seite 35 ausrichten	
•	Gerät gemäß Kapitel 7 auf Seite 14 fest montieren	
8.	Messen	Kapitel 11 auf Seite 30
•	Sicherheitshinweise beachten	
•	Messobjektiv und Neutralglasfilter wählen und einsetzen	
•	Gerät mit der LaserDiagnosticsSoftware LDS ausrichten	
•	Beispielmessung durchführen	

6 Transport

WARNUNG

Verletzungen durch das Anheben oder Fallenlassen des Gerätes

Das Anheben und Positionieren schwerer Geräte kann z. B. zu überbelasteten Bandscheiben und chronische Veränderungen der Lenden- oder Halswirbelsäule führen. Das Gerät kann herunterfallen.

Verwenden Sie zum Anheben und Positionieren des Gerätes eine Hebevorrichtung.

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Durch harte Stöße oder Fallenlassen können die optischen Bauteile beschädigt werden.

- Handhaben Sie das Gerät bei Transport und Montage vorsichtig.
- ▶ Um Verunreinigungen zu vermeiden, verschließen Sie die Aperturen mit den mitgelieferten Deckeln oder optischem Klebeband.
- ► Transportieren Sie das Gerät nur im originalen PRIMES-Transportkoffer.

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch austretendes oder gefrierendes Kühlwasser

Auslaufendes Kühlwasser kann das Gerät beschädigen. Der Transport des Gerätes bei Temperaturen nahe oder unter dem Gefrierpunkt und nicht vollständig entleertem Kühlkreis kann zu Geräteschäden führen.

- Entleeren Sie das Leitungssystem des Kühlkreises vollständig.
- Verwenden Sie zum Entleeren des Kühlkreises keine Druckluft.
- Auch wenn das Leitungssystem des Kühlkreises entleert wurde, verbleibt immer eine geringe Menge Restwasser im Gerät. Dieses kann austreten und ins Geräteinnere gelangen. Verschließen Sie die Anschlussstecker des Kühlkreislaufs mit den beiliegenden Verschlussstopfen.

7 Montage

7.1 Vorbereitung und Einbaulage

Prüfen Sie vor der Montage die Platzverhältnisse, insbesondere den benötigten Freiraum für die Anschlusskabel und -schläuche (siehe Kapitel 18, "Abmessungen", auf Seite 50). Das Gerät muss stabil aufgestellt und mit Schrauben befestigt sein (siehe Kapitel 7.3 auf Seite 17).

Der LaserQualityMonitor LQM+ kann in einer beliebigen Position montiert und betrieben werden. Bei einer Freistrahlmessung muss der LaserQualityMonitor LQM+ zum Laserstrahl ausgerichtet werden. Die Reihenfolge zur Installation entnehmen Sie bitte dem Kapitel 5.3 auf Seite 13.

7.2 LaserQualityMonitor LQM+ manuell ausrichten

Bei einer Freistrahlmessung muss der LaserQualityMonitor LQM+ mit der Ausrichthilfe zum Laserstrahl ausgerichtet werden. Die Eintrittsapertur muss zentrisch und rechtwinklig zum Laserstrahl ausgerichtet werden:

- 1. Richten Sie den LaserQualityMonitor LQM+ mit einem Pilotlaser und der Ausrichthilfe manuell aus.
- Der LaserQualityMonitor LQM+ ist dann richtig ausgerichtet, wenn der Pilotlaserstrahl mittig durch die Bohrungen der Ausrichthilfe verläuft
- 2. Prüfen Sie die Ausrichtung gemäß Kapitel 11.4 auf Seite 35 mit dem Justiermode der LaserDiagnosticsSoftware LDS.

7.2.1 Ausrichthilfe

Für die unterschiedlichen LaserQualityMonitor -Versionen wird eine Ausrichthilfe geliefert, die in sämtliche Aperturdurchmessern eingesetzt werden kann. Nach dem Einführen der Ausrichthilfe in die Apertur wird diese mit Magneten an einem Metallhalbring gehalten.

Abb. 7.1: Ausrichthilfen für die Ausrichtung der LQM-Versionen mit unterschiedlichen Aperturen

7.2.2 Manuelle Ausrichtung des LQM+ 20 Basisgerätes und des LQM+ 200/500 mit 1. Vorstufe

Abb. 7.2: Montierte Ausrichthilfe am LQM+ 20 Basisgerät und am LQM+ 200/500 mit 1. Vorstufe

7.2.3 Feinjustage an der 1. Vorstufe

Mit der 1. Vorstufe, kann der Einfallswinkel des Laserstrahls zur Feinjustage mit zwei integrierten Mikrometerschrauben korrigiert werden (siehe Abb. 7.3 auf Seite 16).

Der Laserstrahl kann somit in Grenzen zum LaserQualityMonitor LQM+ ausgerichtet werden. Die Rückmeldung zur Veränderung der Strahllage durch die Feinjustage erfolgt mit der LaserDiagnosticsSoftware LDS (siehe Kapitel 11.4 auf Seite 35).

Abb. 7.3: Mikrometerschrauben an der 1. Vorstufe zur Feinjustage (am Beispiel des LQM+ 500

7.3 LaserQualityMonitor LQM+ montieren

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Bei einer Freistrahlmessung muss der LaserQualityMonitor LQM+ zum Laserstrahl ausgerichtet werden.

Wird das Gerät aus der eingemessenen Position bewegt, entsteht im Messbetrieb erhöhte gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Befestigen Sie das Gerät so, dass es durch unbeabsichtigtes Anstoßen oder Zug an den Kabeln oder Schläuchen nicht bewegt werden kann.

7.3.1 LQM+ 20/200/500 ohne Bodenplatte montieren

Abb. 7.4: Befestigungsgewinde LQM+ 20/200/500 ohne Bodenplatte

An der Unterseite des Gerätes befinden sich vier Befestigungsgewinde M6 für die Befestigung auf einer kundenseitigen Halterung. Wir empfehlen Schrauben der Festigkeitsklasse 8.8.

➡ 4 Gewindebohrungen M6

7.3.2 LQM+ 200/500 mit Bodenplatte montieren

Abb. 7.5: Befestigungsgewinde LQM+ 200/500, mit Bodenplatte

In der Bodenplatte befinden sich vier Befestigungsgewinde M6 für die Befestigung auf einer kundenseitigen Halterung. Wir empfehlen Schrauben der Festigkeitsklasse 8.8.

➡ 4 Gewindebohrungen M6

7.3.3 LQM+ HP mit Bodenplatte montieren

➡ 4 Befestigungsbohrungen Ø 7,8 mm

→ 4 Gewindebohrungen M8 für die Ausrichtung

8 Kühlkreis anschließen (nur LQM+ HP und LQM+ 500)

GEFAHR

Brandgefahr; Beschädigung/Zerstörung des Gerätes durch Überhitzung

Bei fehlendem Wasseranschluss oder zu niedrigem Durchfluss wird das Gerät überhitzt und kann dadurch beschädigt werden oder in Brand geraten.

Betreiben Sie das Messgerät nur mit angeschlossener Wasserkühlung und ausreichender Durchflussmenge.

8.1 Wasserqualität

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch unterschiedliche chemische Potentiale

Die wasserführenden Teile im Gerät bestehen aus Kupfer, Messing oder rostfreiem Stahl. Ein Anschluss des Gerätes an einen Kühlkreislauf, das Komponenten aus Aluminium enthält, kann zur Korrosion des Aluminiums aufgrund der unterschiedlichen chemischen Potentiale führen.

- Das Gerät kann sowohl mit Leitungswasser als auch mit demineralisiertem Wasser betrieben werden.
- Betreiben Sie das Gerät nicht an einem Kühlkreislauf, der Additive wie z. B. Frostschutzmittel enthält.
- Betreiben Sie das Gerät nicht an einem Kühlkreislauf, in dem Komponenten aus Aluminium verbaut sind. Insbesondere beim Betrieb mit hohen Leistungen und Leistungsdichten kann es sonst zu einer Korrosion im Kühlkreislauf kommen. Langfristig wird dadurch die Leistungsfähigkeit des Kühlkreislaufs reduziert.
- Sollte trotz Überwachung die Kühlung ausfallen, kann das Gerät für einige Sekunden der Laserstrahlung widerstehen. Prüfen Sie in diesem Fall das Gerät und die Wasseranschlüsse auf Beschädigung.

8.2 Wasserdruck

Normalerweise sind 2 bar Primärdruck am Eingang des Absorbers bei drucklosem Ablauf ausreichend um die notwendige Durchflussmenge sicherzustellen.

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch Überdruck

Der maximal zulässige Wasserdruck beträgt 4 bar.

8.3 Luftfeuchtigkeit

- Das Gerät darf nicht in kondensierender Atmosphäre betrieben werden. Die Luftfeuchtigkeit ist zu berücksichtigen, um Kondensate innerhalb und außerhalb des Gerätes zu vermeiden.

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch Kondenswasser

Kondenswasser im Messobjektiv kann zur Beschädigung führen.

Beachten Sie den Taupunkt in Tab. 8.1 auf Seite 21.

Kühlen Sie das Gerät nur während des Messbetriebs. Wir empfehlen, die Kühlung ca. 2 Minuten vor der Messung zu starten und ca. 1 Minute nach der Messung zu beenden.

Tab. 8.1: Taupunkt-Diagramm

Beispiel

Lufttemperatur: 22 °C Relative Luftfeuchtigkeit: 60 %

Die Kühlwassertemperatur darf 14 °C nicht unterschreiten.

8.4 Wasseranschlüsse und Wasserdurchflussmenge

8.4.1 LQM+ HP (10 kW und 20 kW)

LQM+ HP (10 kW)					
Anschlussdurchmesser	Empfohlene Durchflussmenge	Mindestdurchflussmenge			
PE-Schläuche 16 mm	7 l/min – 8 l/min (1 l/(min · kW)	4,5 l/min nicht unterschreiten			
LQM+ HP (20 kW)					
Anschlussdurchmesser	Empfohlene Durchflussmenge	Mindestdurchflussmenge			
PE-Schläuche 16 mm	16 l/min – 20 l/min (1 l/(min · kW)	14 l/min nicht unterschreiten			

8.4.2 LQM+ 500

LQM+ 500	
Anschlussdurchmesser	Empfohlene Durchflussmenge
PE-Schläuche 6 mm	1,5 l/min (1 l/(min · kW)

Abb. 8.1: Wasseranschlüsse am LQM+ HP und am LQM+ 500

8.4.3 Verschlussstopfen der Wasseranschlüsse entfernen

Abb. 8.2: Verschlussstopfen der Wasseranschlüsse entfernen

9 Elektrischer Anschluss

Der LaserQualityMonitor LQM+ benötigt für den Betrieb eine Versorgungsspannung von 24 V \pm 5 % (DC). Ein passendes Netzteil wird mitgeliefert.

Bitte verwenden Sie ausschließlich das PRIMES-Netzteil und die mitgelieferten Anschlussleitungen.

Bitte stellen Sie erst alle elektrischen Verbindungen her und schalten Sie das Gerät ein, bevor Sie die LaserDiagnosticsSoftware LDS starten. Der LaserQualityMonitor LQM+ dient dabei für die Software auf dem Rechner als Dongle zur Freiga-

Der LaserQualityMonitor LQM+ dient dabei für die Software auf dem Rechner als Dongle zur Freigabe bestimmter Softwarefunktionen.

9.1 Anschlüsse

Abb. 9.1: Anschlüsse

9.2 Pinbelegung

9.2.1 Spannungsversorgung

Harting M12-P-PCB-THR-2PC-5P-LCOD-M-STR (Ansicht Steckseite)

Tab. 9.1:Anschlussbuchse f
ür das Netzteil im Anschlussfeld

9.2.2 Eingang externer Trigger

Abb. 9.2: Anschlussbuchse BNC Eingang für einen externen Trigger im Anschlussfeld

9.2.3 Ausgang interner Trigger

BNC Stecker (Ansicht Steckseite)					
	Pin	Funktion			
	1	+5 V (Triggersignal)			
	2	GND			

Abb. 9.3: Anschlussbuchse BNC Ausgang für den internen Trigger im Anschlussfeld

9.3 Sicherheitseinrichtungen

9.3.1 Überwachung des seitlichen Zugangs zu Messobjektiv und Neutralglasfilter

Ein Sicherheitsschalter überwacht die seitliche Gehäuseplatte. Bei einer demontierten Gehäuseplatte wird bei einem angeschlossenem externen Sicherheitskreis (Safety Interlock) der Laser ausgeschaltet.

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Ohne angeschlossenem externen Sicherheitskreis (Safety Interlock) kann bei geöffneter seitlicher Gehäuseplatte im Messbetrieb reflektierte Strahlung (Laserklasse 4) aus dem Gerät austreten.

Betreiben Sie das Gerät nur mit montierter seitlicher Gehäuseplatte.

Abb. 9.4: Gerät mit demontierter, seitlicher Gehäuseplatte

9.3.2 Temperaturkontrolle

In der 1. und 2. Vorstufe ist jeweils ein Temperaturschalter eingebaut, der beim Überschreiten einer Temperatur von 75 °C eine Warnmeldung in der LaserDiagnosticsSoftware LDS ausgibt. Bei einem angeschlossenen externen Sicherheitskreis (Safety Interlock) wird der Laser ausgeschaltet.

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Ohne angeschlossenem externen Sicherheitskreis (Safety Interlock) kann bei einer Übertemperatur das Gerät beschädigt oder zerstört werden.

- Betreiben Sie das Gerät nur mit einem angeschlossenem externen Sicherheitskreis (Safety Interlock).
- ► Der LaserQualityMonitor LQM+ darf zu keiner Zeit unbeaufsichtigt Messungen durchführen.

9.3.3 Externer Sicherheitskreis (Safety Interlock)

Im LaserQualityMonitor LQM+ 20 Basisgerät ist der Anschluss für einen externen Sicherheitskreis (Safety Interlock) integriert der die 1. und 2. Vorstufe auf eine Übertemperatur und das Öffnen der seitlichen Gehäuseplatte überwacht.

🚹 GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung; Beschädigung/Zerstörung des Gerätes

Ist der externe Sicherheitskreis (Safety Interlock) nicht angeschlossen, werden die Sicherheitseinrichtungen des Gerätes nicht überwacht.

Schließen Sie die Lasersteuerung so an die Anschlüsse 1 bis 4 an, dass bei einer Unterbrechung dieser Verbindung der Laser abgeschaltet wird.

Abb. 9.5: Gerätestecker des externen Sicherheitskreis (Safety Interlock) im Anschlussfeld

Binder M8; 8	Binder M8; 86 6119 1100 00008			
Pin	Funktion			
1	Externer Sicherheitskreis (Safety Interlock) (potentialfrei). Mit Pin 2 verbunden wenn betriebsbereit. Mit Pin 3 verbunden wenn nicht betriebsbereit.			
2	Externer Sicherheitskreis (Safety Interlock) (potentialfrei). Mit Pin 1 verbunden wenn betriebsbereit.			
3	Externer Sicherheitskreis (Safety Interlock) (potentialfrei). Mit Pin 1 verbunden wenn nicht betriebsbereit.			
4	Externer Sicherheitskreis (Safety Interlock) (potentialfrei). Mit Pin 5 verbunden wenn betriebsbereit. Mit Pin 6 verbunden wenn nicht betriebsbereit.			
5	Externer Sicherheitskreis (Safety Interlock) (potentialfrei). Mit Pin 4 verbunden wenn betriebsbereit.			
6	Externer Sicherheitskreis (Safety Interlock) (potentialfrei). Mit Pin 4 verbunden wenn nicht betriebsbereit.			
7	+ 24 V			
8	Externer Sicherheitskreis (Safety Interlock) GND			

Tab. 9.2: Steckerbelegung externer Sicherheitskreis (Safety Interlock)

Die Lasersteuerung muss zwischen Pin 1 und Pin 2 oder zwischen Pin 4 und Pin 5 angeschlossen sein, sodass bei einer Unterbrechung dieser Verbindung der Laser abgeschaltet wird.

Um zu erkennen, ob der externe Sicherheitskreis (Safety Interlock) überhaupt angeschlossen ist, müssen in der Buchse Pin 7 und Pin 8 gebrückt sein. Ist die Buchse nicht eingesteckt und der externe Sicherheitskreis (Safety Interlock) somit nicht aktiv, wird eine Warnmeldung in der LaserDiagnosticsSoftware LDS ausgegeben. Eine passende 8-polige Kabelbuchse ist im Lieferumfang enthalten.

9.4 Anschluss an den PC und Stromversorgung anschließen

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Beim Trennen der elektrischen Leitungen während des Betriebs (bei angelegter Versorgungsspannung) entstehen Spannungsspitzen, welche die Kommunikationsbausteine der Messgeräte zerstören können.

- Schalten Sie zuerst das Netzteil aus, bevor Sie die Leitungen trennen.
- 1. Verbinden Sie das Gerät über ein Crossover-Kabel mit dem PC oder über ein Patch-Kabel mit dem Netzwerk.
- 2. Stecken Sie das Netzteil in die Anschlussbuchse für das Netzteil.

Abb. 9.6: Anschluss über Ethernet an einen PC oder ein lokales Netz

10 Statusanzeige

Die Statusanzeige besteht aus einem Leuchtfeld, das durch unterschiedliche Farben verschiedene Zustände des LaserQualityMonitor LQM+ anzeigt.

Farbe	Bedeutung
Weiß	Das Gerät ist eingeschaltet und betriebsbereit
Gelb	Messung läuft
Rot	Kurzzeitiges Aufleuchten während der Aufnahme einer Messebene. Dauerhaftes Aufleuchten signalisiert einen Gerätefehler. Der Gerätefehler wird in der LaserDiagnosticsSoftware LDS angezeigt.

Tab. 10.1: Zustände der Statusanzeige

Tab. 10.2: Statusanzeige

11 Messen

11.1 Sicherheitshinweise

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM+ darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

- Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- Tragen Sie geeignete Schutzkleidung und Schutzhandschuhe.
- Schützen Sie sich vor Laserstrahlung durch trennende Vorrichtungen (z. B. durch geeignete Abschirmwände).

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Wird das Gerät aus der eingemessenen Position bewegt, entsteht im Messbetrieb erhöhte gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Befestigen Sie das Gerät so, dass es durch unbeabsichtigtes Anstoßen oder Zug an den Kabeln oder Schläuchen nicht bewegt werden kann.

🚹 GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Ohne angeschlossenem externen Sicherheitskreis (Safety Interlock) kann bei geöffneter seitlicher Gehäuseplatte im Messbetrieb reflektierte Strahlung (Laserklasse 4) aus dem Gerät austreten.

Schließen Sie den externen Sicherheitskreis (Safety Interlock) des Gerätes an die Lasersteuerung an. Prüfen Sie die ordnungsgemäße Abschaltung des Lasers im Fehlerfall durch den externen Sicherheitskreis (Safety Interlock).

ACHTUNG

Beschädigung/Zerstörung des Gerätes

Ohne angeschlossenem externen Sicherheitskreis (Safety Interlock) kann bei einer Übertemperatur das Gerät beschädigt oder zerstört werden.

- Schließen Sie den externen Sicherheitskreis (Safety Interlock) des Gerätes an die Lasersteuerung an. Prüfen Sie die ordnungsgemäße Abschaltung des Lasers im Fehlerfall durch den externen Sicherheitskreis (Safety Interlock).
- ▶ Der LaserQualityMonitor LQM+ darf zu keiner Zeit unbeaufsichtigt Messungen durchführen.

11.2 Auswahl und Wechsel der Messobjektive und des Neutralglasfilters

11.2.1 Auswahl des Messobjektivs

Die richtige Auswahl des Messobjektivs ist für die Qualität der Messung von entscheidender Bedeutung. Die Einsatzgrenzen für das 1:1 oder das 5:1 Messobjektiv zeigt das Diagramm in Tab. 11.1 auf Seite 31.

Tab. 11.1: Anwendungsbereiche der LQM+-Messobjektive

Blauer Bereich 1:1 Messobjektiv Roter Bereich 5:1 Messobjektiv

$$d_{foc} = \frac{4 \cdot \lambda}{\pi} \cdot \frac{f_{200\text{mm}}}{d_{\text{Rohstrahl}}} \cdot M^2$$

Beispiel

Das nachfolgende Beispiel erläutert die Wahl des Messobjektivs auf Grund des minimalen Strahldurchmessers im LaserQualityMonitor LQM+ und der in Abhängigkeit vom Messobjektiv (MOB) zu erzielenden Anzahl an belichteten Pixeln.

 $\begin{aligned} \lambda &= 1\ 064\ nm \\ M^2 &= 1 \\ d_{Rohstrahl} &= 7,3\ mm \end{aligned}$

Bei einen Füllfaktor von 35 % und einer Auflösung von 64 Pixel werden minimal 22 belichtete Pixel benötigt.

Anzahl der belichteten Pixel bei 4,4 µm Pixelabstand = $\frac{d_{foc}}{4,4 \text{ µm}} \cdot \beta$ (Vergrößerung des Messobjektivs 1 oder 5)

MOB 1:1 --> 37,1 µm / 4,4 µm · 1 = 8 × MOB 5:1 --> 37,1 µm / 4,4 µm · 5 = 42 ✓

11.2.2 Wechsel des Messobjektivs oder des Neutralglasfilters

Für den Wechsel eines Messobjektivs oder des Neutralglasfilters muss die seitliche Gehäuseplatte geöffnet werden:

- 1. Schalten Sie den Laser aus.
- 2. Drücken Sie die zwei Sperrriegel ein (siehe Abb. 11.1 auf Seite 32):
- Die seitliche Gehäuseplatte springt heraus.
- Der externe Sicherheitskreis (Safety Interlock) wird ausgelöst (siehe Kapitel 9.3.1 auf Seite 26).

An drei Positionen können optische Komponenten in den Strahlengang des LaserQualityMonitor LQM+ eingeschoben werden (siehe Abb. 11.1 auf Seite 32, Positionen 1, 2, 3).

Einschub	Optische Komponente
1	5:1 Messobjektiv
2	1:1 Messobjektiv
3	Neutralglasfilter (OD-Filter)
4 5 6	Parkeinschübe für nicht benutzte Komponenten

Tab. 11.2: Einschub-Positionen der optischen Komponenten

Wichtig: Um Messfehler zu vermeiden, darf sich immer nur ein Messobjektiv im Strahlengang befinden.

Alle Einschübe sind über zwei Passstifte unterschiedlich kodiert, um eine Verwechslung der Messobjektive und des Neutralglasfilters auszuschließen. Die Messobjektive und die OD-Filter sind zusätzlich mit einem elektronischen Speicherbaustein (EE-Prom) versehen. Der EE-Prom enthält Informationen zu den Messobjektiven und den OD-Filtern die in den Metadaten der LaserDiagnosticsSoftware LDS angezeigt werden.

Abb. 11.1: Einschub-Positionen der optischen Komponenten

ACHTUNG

Beschädigung des Gerätes

Verschmutzungen im Gerät können die optischen Bauteile beschädigen.

▶ Verschließen Sie nicht benutzte Einschübe immer mit den Blindeinsätzen.

Abb. 11.2: Blindeinsatz

🚹 GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Ohne angeschlossenem Sicherheitskreis und geöffneter seitlicher Gehäuseplatte kann im Messbetrieb reflektierte Strahlung (Laserklasse 4) aus dem Gerät austreten.

- Betreiben Sie das Gerät nur mit montierter seitlicher Gehäuseplatte.
- 3. Setzen Sie die seitliche Gehäuseplatte in die Aufnahmen im Gehäuse (siehe Abb. 11.1 auf Seite 32).
- 4. Klappen Sie die Gehäuseplatte nach oben, bis die 2 Sperrriegel einrasten.
- 5. Prüfen Sie, dass die Gehäuseplatte plan am Gehäuse anliegt.

11.2.3 Neutralglasfilter

Je nach Laserstrahlquelle und Konfiguration des LaserQualityMonitor LQM+ kann es nötig werden, den Laserstrahl weiter abzuschwächen.

Dies wird mit einem Neutralglasfilter erreicht, der kurz vor dem CCD-Sensor in den Strahlengang gebracht wird. Die optische Dichte des Filters kann zwischen 1 (1:10) und 5 (1:100 000) variiert werden.

Abb. 11.3: Neutralglasfilter

O

□ ×

×

LaserQualityMonitor LQM+ mit der LaserDiagnosticsSoftware LDS verbinden 11.3

11.3.1 Gerät verbinden

11.3.2 Netzwerkadresse eines verbundenen Gerätes ändern

11.4 LaserQualityMonitor LQM+ mit der LaserDiagnosticsSoftware LDS ausrichten

Nach der manuellen Ausrichtung mit der Ausrichthilfe gemäß Kapitel 7.2 auf Seite 15 (nur bei einer Freistrahlmessung) oder nach dem Einstecken der Faser, können Sie die Ausrichtung mit einer Funktion der LaserDiagnosticsSoftware LDS prüfen.

11.4.1 Messmodus Strahllage wählen

11.4.2 Strahlsuche starten

- 1. Beachten Sie die Sicherheitshinweise im Kapitel 11.1 auf Seite 30.
- 2. Schalten Sie den Laser ein.
- 3. Klicken Sie auf die Schaltfläche Start.
- Der Fortschritt der Strahllagenbestimmung wird in den Anzeigen Vorkaustik, Messe Strahllage und anschließend Justage erfolgreich angezeigt.

Vorkaustik

Während der Vorkaustik werden im Fenster **Falschfarbenansicht** automatisch die optimalen z1- und z2-Positionen entlang der Strahlpropagation ermittelt (siehe auch Abb. 11.4 auf Seite 39).

Messe Strahllage

Während der Messung werden kontinuierlich Messpunkte an den Positionen z1 und z2 aufgenommen.

Die aktuelle Position des Laserstrahls wird durch ein großes X, vorangegangene Positionen durch ein kleines x dargestellt.

Richten Sie den Laserstrahl so aus, dass die Position des aktuellen Messpunkts X in den Fenstern **Position** und **Winkel** möglichst mittig im Fadenkreuz liegen.

Nur bei einer 1. Vorstufe: Verwenden Sie hierzu die Stellschrauben an der 1. Vorstufe.

Die Darstellung der Strahllage in den Fenstern Position und Winkel kann durch das Anklicken des Zahnradsymbols zu einer Anzeige der Strahllagenstabilität umgeschaltet werden.

Die Werte der Strahllagenstabilität in den Fenstern **Position** und **Winkel** können Sie durch das Drücken der Schaltfläche **Zurücksetzen** zurücksetzen.

erfolgreich.

- Oer Kreis der Anzeige wechselt von Rot auf Grün.
- 4. Klicken Sie auf die Schaltfläche Stop.
- 5. Schalten Sie den Laser aus.

Wird der Laserstrahl durch die automatisierte Strahlsuche nicht gefunden, geben Sie die Positionen der Messungen z1 und z2 zur Strahlsuche gemäß Kapitel 11.4.4 auf Seite 39 manuell ein.

11.4.3 Strahllagenstabilität protokollieren

11.4.4 Wird der Laserstrahl nicht gefunden

Wird der Laserstrahl durch die automatisierte Strahlsuche nicht gefunden oder ist der Laserstrahl zu groß für den Messbereich (der Laserstrahl überschreitet die Größe des CCD-Sensors), können Sie die Position der Messungen z1 und z2 zur Strahlsuche auch manuell in der LaserDiagnosticsSoftware LDS eingeben. Die Positionen z1 und z2 definieren den Scanbereich in dem der Laserstrahl gesucht wird.

Abb. 11.4: Position der Messungen z1 und z2 zur Eingabe in den Feldern Justagevoreinstellungen

11.5 Automatische Kaustikmessung durchführen

Dieses Kapitel beschreibt zum ersten Kennenlernen des LaserQualityMonitor LQM+ eine Messung am Beispiel einer automatischen Kaustikmessung mit der Laserdiagnosticssoftware LDS. Eine ausführliche Beschreibung der Softwareinstallation, der Dateiverwaltung und Auswertung der Messdaten entnehmen Sie bitte der gesonderten Betriebsanleitung LaserDiagnosticsSoftware LDS.

11.5.1 Messmodus Automatische Kaustik wählen

11.5.2 Einstellungen vornehmen (Gerätesteuerung > Einstellungen)

- 1. Klicken Sie auf den Reiter *Einstellungen*.
- 2. Wählen Sie die kalibrierte Wellenlänge Ihres LQM+ in nm aus.
- 3. Geben Sie die verwendete Wellenlänge des Lasers in nm ein.
- 4. Geben Sie die Leistung des Lasers in W ein.

Nur bei Messung einer Zeitreihe

- 5. Geben Sie die Anzahl der automatischen Kaustikmessungen ein.
- 6. Geben Sie die Messpause in s zwischen den automatischen Kaustikmessungen ein.

Gerätesteuerung	
Automatische Kaustik	~
Einstellungen Erweitert	
Kalibrie enlängen in nm *	1064 💙
Verwendete Wellenlänge in nm *	1064
Leistung P in W *	10
Brennweite Fokussieroptik in mm *	205,576
Zeitreihe	
Anzahl der Messungen *	1
Messpause in s *	60

11.5.3 Erweiterte Einstellungen vornehmen (Gerätesteuerung > Erweitert)

- 1. Klicken Sie auf den Reiter *Erweitert*.
- 2. Geben Sie die Anzahl der Pixel in x/y-Richtung ein, um die Auflösung auf dem CCD-Sensor einzustellen.
- 3. Geben Sie die Anzahl der Ebenen ein. Die Vorgabe von 21 Ebenen generiert bereits eine valide Messung.

Voreinstellungen speichern

Sie können Informationen zur Strahllage in einer Datei mit Voreinstellungen speichern.

Falls der Laserstrahl nicht gefunden wird

- 1. Geben Sie die ermittelten Werte z1 und z2 aus der z-Achsenlage gemäß Kapitel 11.4.4 auf Seite 39 in die Eingabefelder im Bereich **Vorkaustik** ein.
- 2. Klicken Sie auf das Symbol **Speichern** um die Eingaben in einer Datei zu speichern.

Automatische Kaustik Einstellungen Erweitert Geräteparan peichem # Pixel in x/y * 1024 1024 Anzahl der Ebenen 21 Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	Automatische Kaustik Einstellungen Erweitert Geräteparam peichem # Pixel in x/y * 1024 1024 Anzahl der Ebenen 21 Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70 L L L L L L L L L L L L L L L L L L L	Ge	rätesteuerung	
Einstellungen Erweitert Geräteparam peichern # Pixel in x/y * 1024 1024 Anzahl der Ebenen 21 Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	Einstellungen Erweitert Geräteparan peichem # Pixel in x/y * 1024 1024 Anzahl der Ebenen 21 Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	Automatische Kausti	k	<u> </u>
# Pixel in x/y * 1024 1024 Anzahl der Ebenen 21 Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	# Pixel in x/y * 1024 1024 Anzahl der Ebenen 21 Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	Einstellungen	Erweitert	
Anzahl der Ebenen Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70 z1 z ₀ z2	Anzahl der Ebenen Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	# Pixel in x/y *	1024	1024
Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70	Vorkaustik z-Achsenlage (z1 / z2) in mm * 55 70 z1 z ₀ z2	Anzahl der Ebenen		21
		z ski se nage (z i / zz		z2

11.5.4 Automatische Kaustikmessung starten

- 1. Beachten Sie die Sicherheitshinweise im Kapitel 11.1 auf Seite 30.
- 2. Schalten Sie den Laser ein.
- 3. Klicken Sie auf die Schaltfläche Start.
- Oer Fortschritt der Messung wird in den Anzeigen Vorkaustik, Messe Kaustik und anschließend Messung beendet angezeigt:

Vorkaustik

Während der Anzeige werden automatisch die optimalen Messparameter, wie Messfensterposition, Messfenstergröße, Integrationsszeit und der z-Bereich (Messbereich entlang der Strahlpropagation) bestimmt.

Messe Kaustik

Während der Anzeige wird die eigentliche Messung durchgeführt.

Messung beendet Die Messung ist beendet.

4. Schalten Sie den Laser aus.

11.5.5 Anzeige der Messergebnisse

Die Messergebnisse werden nach der beendeten Messung in den geöffneten Werkzeugen dargestellt (siehe unten).

Eine detaillierte Beschreibung der Werkzeuge und die Auswertung der Messergebnisse entnehmen Sie bitte der gesonderten Betriebsanleitung der LaserDiagnosticsSoftware LDS.

11.6 Leistungsmessung durchführen

Die Leistungsmessung ist mit LaserQualityMonitor LQM+ Geräten mit einer 1. Vorstufe mit 500 W möglich. Bei einer zusätzlichen 2. Vorstufe kann die Leistung separat an der 2. Vorstufe gemessen werden. Die Messung an der 1. oder 2. Vorstufe sind identisch durchzuführen.

Die Werte der Leistungsmessungen werden, unabhängig von der in diesem Kapitel beschriebenen Leistungsmessung, bei einer Einzelebenen-, Kaustik- oder automatischen Kaustikmessung automatisch erfasst und in den Werkbänken in der Tabelle Details dargestellt.

Dieses Kapitel beschreibt zum ersten Kennenlernen des LaserQualityMonitor LQM+ eine Messung am Beispiel einer Leistungsmessung mit der LaserDiagnosticsSoftware LDS. Detaillierte Informationen zur LaserDiagnosticsSoftware LDS entnehmen Sie bitte der gesonderten Betriebsanleitung der LaserDiagnosticsSoftware LDS.

11.6.1 Messmodus Leistungsmessung wählen

 Verbinden Sie das Gerät gemäß Kapitel 11.3 auf Seite 34 mit der LaserDiagnosticsSoftware LDS. Der LaserQualityMonitor LQM+ wird als verbundenes Gerät angezeigt. 	PRIMES LaserDiagnosticsSoftware Datei Verbindungen Messumgebung Werkzeuge Werkbänke Extras Hilfe Geräte Projekte			
 Klicken Sie auf <i>Leistungsmesser 1</i>. Die Messung wird an der 1. Vorstufe durchgeführt. 	LQM+ Test 1475 CCD LQM+ 1475 Leistungsmesser 1 Leistungsmesser 2	Gerätesteuerung Gerätesteuerung Messdauer in min * Messfrequenz in Hz * Geräteoffset in W Zusätzlicher Offset in W Aktuellen Wert als Offset setzen		
 Die zugehörige Gerätesteuerung wird geöffnet. Die Werkbank Leistungsmessung wird geöffnet. 	ote Werkbänke Extras Hilfe	Werkbank Leistungsmessung × Co, OC		

11.6.2 Einstellungen vornehmen (Gerätesteuerung)

 Starten und Beenden Sie eine Messung gemäß Kapitel 11.6.3 auf Seite 44.

Zur Bestimmung des Geräteoffset muss das Gerät eine Thermalisierungszeit durchlaufen.

- 2. Drücken Sie nach beendeter Messung, ohne eingeschalteten Laser, die Schaltfläche **Start**.
- 3. Nach dem Stabilisieren der Anzeige im Werkzeug *Leistungsmessung* klicken Sie auf die Schaltfläche *Stop*.
- 4. Klicken Sie auf die Schaltfläche Aktuellen Wert als Offset setzen.
- Der Wert wird in das Eingabefenster Zusätzlicher Offset in W übernommen.
- Der Geräteoffset kann auch manuell eingegeben werden.
- 5. Geben Sie die Messdauer in min ein.
- Ohne Eingabe der Messdauer wird die Leistung permanent gemessen.
- 6. Geben Sie die *Messfrequenz in Hz* ein.

11.6.3 Leistungsmessung starten

- 1. Beachten Sie die Sicherheitshinweise im Kapitel 11.1 auf Seite 30.
- 2. Schalten Sie den Laser ein.
- 3. Klicken Sie auf die Schaltfläche Start.
- Oer Fortschritt der Messung wird angezeigt.

Bei einer eingegebenen Messzeit im Eingabefenster **Gerätesteuerung > Messdauer in min.** wird die Messung automatisch beendet.

- 4. Klicken Sie auf die Schaltfläche Stop.
- Die Messung wird beendet.
- 5. Schalten Sie den Laser aus.

Start) Stop
:	Status
Messung	59/180 s

11.6.4 Anzeige der Messergebnisse

Die Messergebnisse werden nach der beendeten Messung im geöffneten Werkzeug Leistungsmessung dargestellt (siehe unten).

Eine detaillierte Beschreibung der Werkzeuge und die Auswertung der Messergebnisse entnehmen Sie bitte der gesonderten Betriebsanleitung der LaserDiagnosticsSoftware LDS.

12 Fehlerbehebung

Fehler	Mögliche Ursache	Abhilfe
Fehler während einer Messung.	 Fehler in der Datenüber- tragung Prozessorabsturz im Messsystem Fehler in der Programm- ausführung 	 Starten Sie die Software neu. Schalten Sie die Versorgungsspannung aus und wieder ein und lösen Sie erneut einen Reset-Zyklus aus. Starten Sie den Computer neu.
Außer einem Grundrauschen und dem Nulloffset ist kein Messsignal vorhanden.	Das Gerät ist nicht richtig ausgerichtet.	Prüfen Sie die Geräteausrichtung zum Laserstrahl.
	Die Leistungsdichte im Fokus ist zu niedrig.	Erhöhen Sie die Laserleistung.
Der externe Sicherheitskreis (Safety Interlock) wurde ausgelöst.	Die seitliche Gehäuseplatte ist nicht geschlossen.	Schließen Sie die seitliche Gehäuseplatte.
	Der Temperaturfühler im Gerät misst eine Temperatur > 60° C.	 Schalten Sie den Laser unverzüglich aus. Prüfen Sie, ob die eingestell- te Laserleistung innerhalb der Gerätespezifikationen liegt. Prüfen Sie die Kühlwasserversorgung (nur LQM+ HP und LQM+ 500 (was- sergekühlt).
Fehlermeldungen in der LaserDiagnosticsSoftware LDS	Mögliche Ursache	Abhilfe
Achtung das Gehäuse ist geöffnet! Nach dem Messobjektivwechsel bitte das Gehäuse wieder schließen.	Die seitliche Gehäuseplatte ist nicht geschlossen.	Schließen Sie die seitliche Gehäuseplatte.
Achtung das Gehäuse ist geöffnet! Nach dem Messobjektivwechsel bitte das Gehäuse wieder schließen. Kein Messobjektiv oder zwei Messobjektive erkannt.	Die seitliche Gehäuseplatte ist nicht geschlossen. Es ist kein Messobjektiv eingesetzt oder es sind zwei Messobjektive in das Gerät eingesetzt.	Schließen Sie die seitliche Gehäuseplatte. Setzen Sie nur ein Messobjektiv ein. Prüfen Sie die Position des Messobjektivs.
Achtung das Gehäuse ist geöffnet! Nach dem Messobjektivwechsel bitte das Gehäuse wieder schließen. Kein Messobjektiv oder zwei Messobjektive erkannt. Das verwendete Messobjektiv ist nicht für dieses Gerät kalibriert, die Messungenauigkeit kann erheblich erhöht sein.	Die seitliche Gehäuseplatte ist nicht geschlossen. Es ist kein Messobjektiv eingesetzt oder es sind zwei Messobjektive in das Gerät eingesetzt. Es wurde ggf. ein Messobjektiv aus einem anderen Gerät eingesetzt.	Schließen Sie die seitliche Gehäuseplatte. Setzen Sie nur ein Messobjektiv ein. Prüfen Sie die Position des Messobjektivs. Prüfen Sie das eingesetzte Messobjektiv. Für eine höhere Messgenauigkeit sollte das Messobjektiv für das spezifische Gerät durch PRIMES kalibriert werden.
Achtung das Gehäuse ist geöffnet! Nach dem Messobjektivwechsel bitte das Gehäuse wieder schließen. Kein Messobjektiv oder zwei Messobjektive erkannt. Das verwendete Messobjektiv ist nicht für dieses Gerät kalibriert, die Messungenauigkeit kann erheblich erhöht sein. Messung nicht möglich, die Verbindung zum Kamerakopf ist unterbrochen. Bitte das Gerät aus und wieder einschalten.	Die seitliche Gehäuseplatte ist nicht geschlossen. Es ist kein Messobjektiv eingesetzt oder es sind zwei Messobjektive in das Gerät eingesetzt. Es wurde ggf. ein Messobjektiv aus einem anderen Gerät eingesetzt. Das Gerät konnte den Kamerakopf nicht initialisieren.	 Schließen Sie die seitliche Gehäuseplatte. Setzen Sie nur ein Messobjektiv ein. Prüfen Sie die Position des Messobjektivs. Prüfen Sie das eingesetzte Messobjektiv. Für eine höhere Messgenauigkeit sollte das Messobjektiv für das spezifische Gerät durch PRIMES kalibriert werden. Schalten Sie das Gerät aus und anschlie- Bend wieder ein.
Achtung das Gehäuse ist geöffnet! Nach dem Messobjektivwechsel bitte das Gehäuse wieder schließen. Kein Messobjektiv oder zwei Messobjektive erkannt. Das verwendete Messobjektiv ist nicht für dieses Gerät kalibriert, die Messungenauigkeit kann erheblich erhöht sein. Messung nicht möglich, die Verbindung zum Kamerakopf ist unterbrochen. Bitte das Gerät aus und wieder einschalten. Fehler beim Speichern der benutzerdefinierten Geräteeinstellungen, die Parameter müssen neu eingestellt werden.	Die seitliche Gehäuseplatte ist nicht geschlossen. Es ist kein Messobjektiv eingesetzt oder es sind zwei Messobjektive in das Gerät eingesetzt. Es wurde ggf. ein Messobjektiv aus einem anderen Gerät eingesetzt. Das Gerät konnte den Kamerakopf nicht initialisieren. Die Geräteeinstellungen konnten nicht in das Gerät gespeichert werden.	 Schließen Sie die seitliche Gehäuseplatte. Setzen Sie nur ein Messobjektiv ein. Prüfen Sie die Position des Messobjektivs. Prüfen Sie das eingesetzte Messobjektiv. Für eine höhere Messgenauigkeit sollte das Messobjektiv für das spezifische Gerät durch PRIMES kalibriert werden. Schalten Sie das Gerät aus und anschlie- ßend wieder ein. Speichern Sie die Geräteeinstellungen erneut.

Tab. 12.1: Fehlerbehebung

13 Wartung und Inspektion

Für die Festlegung der Wartungsinterwalle für das Messgerät ist der Betreiber verantwortlich. PRIMES empfiehlt ein Wartungsintervall von 12 Monaten für Inspektion und Validierung oder Kalibrierung. Bei sporadischem Gebrauch des Messgeräts kann das Wartungsintervall auch auf bis zu 24 Monate festgelegt werden.

14 Lagerung

Bitte beachten Sie vor einer Lagerung bei wassergekühlten Geräten:

ACHTUNG

Beschädigung/Zerstörung des Gerätes durch austretendes oder gefrierendes Kühlwasser

Auslaufendes Kühlwasser kann das Gerät beschädigen. Die Lagerung des Gerätes bei Temperaturen nahe oder unter dem Gefrierpunkt und nicht vollständig entleertem Kühlkreis kann zu Geräteschäden führen.

- Entleeren Sie das Leitungssystem des Kühlkreises vollständig.
- Verwenden Sie zum Entleeren des Kühlkreises keine Druckluft.
- Um Verunreinigungen zu vermeiden, verschließen Sie bitte die Aperturen mit den mitgelieferten Deckeln oder optischem Klebeband.
- Auch wenn das Leitungssystem des Kühlkreises entleert wurde, verbleibt immer eine geringe Menge Restwasser im Gerät. Dieses kann austreten und ins Geräteinnere gelangen. Verschließen Sie die Anschlussstecker des Kühlkreislaufs mit den beiliegenden Verschlussstopfen.
- Lagern Sie das Gerät im originalen PRIMES-Transportkoffer.

15 Maßnahmen zur Produktentsorgung

PRIMES ist im Rahmen des Elektro- und Elektronikgerätegesetzes (ElektroG) verpflichtet, nach dem August 2005 gefertigte PRIMES-Messgeräte kostenlos zu entsorgen.

PRIMES ist bei der Stiftung Elektro-Altgeräte-Register ("EAR") als Hersteller unter der Nummer WEEE-Reg.-Nr. DE65549202 registriert.

Sie können zu entsorgende PRIMES-Messgeräte zur kostenfreien Entsorgung (dieser Service beinhaltet nicht die Versandkosten) an unsere Adresse senden:

PRIMES GmbH Max-Planck-Str. 2 64319 Pfungstadt Deutschland

16 Konformitätserklärung

Original-EG-Konformitätserklärung

Der Hersteller: PRIMES GmbH, Max-Planck-Straße 2, 64319 Pfungstadt

erklärt hiermit, dass das Gerät mit der Bezeichnung:

LaserQualityMonitor (LQM)

Typen: LQM 20; LQM 200/500; HP-LQM II LQM+ 20; LQM+ 200/500; LQM+ HP

die Bestimmungen der folgenden einschlägigen EG-Richtlinien erfüllt:

 Maschinenrichtlinie 2006/42/EG
 EMV-Richtlinie 2014/30/EU
 Niederspannungsrichtlinie 2014/35/EU
 RoHS-Richtlinie 2011/65/EU zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten
 Richtlinie 2004/22/EG über Messgeräte

> Bevollmächtigter für die Dokumentation: PRIMES GmbH, Max-Planck-Str. 2, 64319 Pfungstadt

Der Hersteller verpflichtet sich, die technischen Unterlagen der zuständigen nationalen Behörde auf begründetes Verlangen innerhalb einer angemessenen Zeit elektronisch zu übermitteln.

Pfungstadt, 20.Mai 2019

Dr. Reinhard Kramer, Geschäftsführer

17 Technische Daten

Kenndaten Messung	LQM+ 20	LQM+ 200/500	LQM+ HP (10 kW)	LQM+ HP (20 kW)						
Leistungsbereich bei 1064 nm	20 W	200 W (opt. 500 W)	$M^2 < 5 = 3 \text{ kW}$ $M^2 > 5 = 10 \text{ kW}$	$M^2 < 5 = 5 \text{ kW}$ $M^2 > 5 = 20 \text{ kW}$						
Pulsdauer		100 fs - cw								
Wellenlängenbereich	340 – 360 515 – 545 1 030 – 1 0)nm (UV)/ nm (Grün)/ 90 nm (NIR)	532 nm auf Anfrage/ 1 030 – 1 090 nm (NIR)	1 030 – 1 090 nm (NIR)						
Strahldurchmesser		1,5 – 9 mm		Single mode: 14 – 16mm Multi mode: 18 – 22mm						
Beugungsmaßzahl M ²		1 –	50							
Max. Strahldivergenz		10 n	nrad							
Ermittelte Parameter										
Leistungsdichteverteilung	2D, 3D									
Versorgungsdaten										
Elektrische Versorgung		24 V DC ± 5 9	%, max. 1,8 A							
Kühlung	Luftkühlung	Luftkühlung (opt. Wasserkühlung)	Wasserkühlung	Wasserkühlung						
Kühlwasserdruck	min. 2 bar Primärdruck bei druck Ablauf, max. 4 bar		uck bei drucklosem nax. 4 bar	min. 4 bar						
Min. Kühlwasserdurchfluss		1,5 l/min	7 l/min	18 l/min						
Kühlwassertemperatur T _{in} 1)		Таири	inkttemperatur < T _{in} <	30 °C						
¹⁾ Soll außerhalb dieser Spezifika	ation gearbeitet werde	n, bitte vorher mit PRII	MES Rücksprache hal	ten.						
Kommunikation										
Interface		Ethe	ernet							
Abmessungen und Gewichte										
Abmessungen (L x B x H)	285x190x180mm	350x230x190mm	480x300x190mm	495x320x190mm						
Gewicht	ca. 10kg	ca. 18kg	ca. 35 kg	ca. 35 kg						
Umgebungsbedingungen										
Gebrauchstemperaturbereich		10 -	40 °C							
Lagerungstemperaturbereich		5 - 5	50 °C							
Referenztemperatur		22	°C							
Zulässige relative Luftfeuch- tigkeit (nicht kondensierend)		10 –	80%							

18 Abmessungen

18.1 LQM+ 20

Ansicht A

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

18.2 LQM+ 200/500 (ohne Bodenplatte)

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

18.3 LQM+ HP

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

19 Anhang

19.1 Ändern der Werkseinstellung am LQM+ 20/200UV

ACHTUNG

Beschädigung/Zerstörung der optischen Bauteile

Das Ändern der Werkseinstellungen kann während des Messvorgangs zu Schäden am Gerät führen.

Das Ändern der Werkseinstellung darf nur von geschultem und erfahrenen Fachpersonal vorgenommen werden. Im Zweifelsfall kontaktieren Sie bitte den PRIMES Service.

Die Länge des internen Strahlengangs wird durch die Bewegung der Prismen im Inneren des Gerätes beeinflusst. Abhängig von den optischen Eigenschaften und den Pulsparametern einer Laserquelle können Schäden an den internen optischen Bauteilen auftreten. Insbesondere bei kurzgepulsten UV-Lasern sind die Schäden vorhersehbar.

Um zu vermeiden, dass das Gerät beschädigt wird und eine Positionierung des Prismas in der Nähe des internen Fokus vermieden wird, kann ein verkürzter Positionierbereich gewählt werden. Der LaserQualityMonitor LQM+ 20/200UV wird standardmäßig mit dem verkürzten Positionierungsbereich ausgeliefert. Werkseinstellungen für Standard- und verkürzten Positionierbereich sind mit einem Jumper voreingestellt, siehe Abbildung unten.

Sie können den Verfahrweg durch das Umstecken einer Steckbrücke im Gerät wieder verlängern.

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Ohne angeschlossenem externen Sicherheitskreis (Safety Interlock) kann bei geöffneter seitlicher Gehäuseplatte und eingeschaltetem Laser reflektierte Strahlung (Laserklasse 4) aus dem Gerät austreten.

- Schalten Sie den Laser aus, bevor sie die seitliche Gehäuseplatte abnehmen.
- 1. Schalten Sie den Laser aus.
- Schalten Sie die Spannungsversorgung des LQM+ aus.
- Entfernen Sie die seitliche Gehäuseplatte des Gerätes, indem Sie die zwei Sperrriegel niederdrücken (siehe rote Pfeile).
- Die seitliche Gehäuseplatte springt heraus.

ACHTUNG

Elektrostatisch gefährdetes Bauteil

- Die Platine kann durch elektrostatische Entladung zerstört werden.
- Legen Sie vor Umstecken des Jumpers ein ESD-Erdungsarmband an.
- 4. Legen Sie vor dem Jumperwechsel ein ESD-Erdungsarmband an.
- 5. Auf der Platine befindet sich eine Steckbrücke. Bringen Sie die Steckbrücke in die gewünschte Position.
- Setzen Sie die Seitenplatte wieder ein und drücken Sie diese in die Verriegelung, bis sie einrastet (siehe Abb. 11.1 auf Seite 32).
 Klappen Sie die Gehäuseplatte
- 7. Klappen Sie die Gehäuseplatte nach oben, bis die 2 Sperrriegel einrasten.
- Prüfen Sie, dass die Gehäuseplatte plan am Gehäuse anliegt.
- 9. Schalten Sie den LaserQualityMonitor LQM+ ein.
 Das Gerät verfährt den Prismenschlitten zur einer
- Referenzierung und stoppt.
 Nach dem Abfahren der
- Referenzierung befindet sich der Prismenschlitten innerhalb des zulässigen Bereichs.

19.2 HighYAG-Kollimationsmodul bis 6 kW

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM+ darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

- ► Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- ▶ Tragen Sie geeignete Schutzkleidung und Schutzhandschuhe.
- Schützen Sie sich vor Laserstrahlung durch trennende Vorrichtungen (z. B. durch geeignete Abschirmwände).

PRIMES bietet als Option ein 67 mm HighYAG-Kollimationsmodul an, das direkt an die 2. Vorstufe des LQM+ HP montiert werden kann.

Kenndaten	
Max. Leistung	6 kW (Multi mode)
	3 kW (Single mode)
Brennweite	67 mm
Zulässige Divergenz	160 mrad (Halbwinkel)*
Wellenlängenbereich	1 025 – 1 080 nm
Design-Wellenlänge	1 064 nm
Kerndurchmesser der verwendeten Lichtleitfaser	10 – 1 000 μm
Lichtleitfaser-Stecker	LLK-D & QBH (LLK-B auf Anfrage)
* Wird das 67 mm-Kollimationsmodul mit einem LQM+ HP maximal 110 mrad betragen.	betrieben, darf die Divergenz (Halbwinkel)

Tab. 19.1: Spezifikationen des 67 mm HighYAG-Kollimationsmoduls bis 6 kW

19.2.1 Kenndaten des Kühlsystems für das HighYAG-Kollimationsmodul

Kenndaten	
Max. Druck	6 bar
Min. Durchflussrate	2 l/min
Kühlwasserqualität	DI-Wasser mit Korrosionsinhibitor
Filterfeinheit	< 100 µm

Tab. 19.2: Spezifikationen des Kühlsystems

Abb. 19.1: Wasseranschlüsse

i

19.2.2 Schema des Kühlkreises für das HighYAG-Kollimationsmoduls

Wichtig: Das Kollimationsmodul darf nicht an den Kühlkreis des LQM+ HP angeschlossen werden, sondern an den Kühlkreis der Faser.

Abb. 19.2: Schema Kühlkreis des Kollimationsmoduls

19.2.3 HighYAG-Kollimationsmodul demontieren/montieren

Benötigtes Werkzeug:

- Innensechskantschlüssel SW 2,5 mm
- Innensechskantschlüssel SW 3 mm

ACHTUNG

Beschädigung/Zerstörung der optischen Bauteile

Eine verschmutzte Linse kann sich erhitzen, die optischen Eigenschaften verändern und möglicherweise beschädigt werden.

Vermeiden Sie Verschmutzungen und f
ühren Sie die Arbeiten ausschlie
ßlich in einer sauberen und staubfreien Umgebung durch.

Abb. 19.3: Position des Kollimationsmoduls

- 1. Schalten Sie die Spannungsversorgung des LQM+ aus. 2. Lösen Sie vier Gewindestifte A mit dem mitgelieferten Innensechskantschlüssel (SW в 2,5 mm). 3. Entfernen Sie vier Abdeckungen B. С 4. Entfernen Sie vier Schrauben C mit dem mitgelieferten Innensechskantschlüssel (SW 3 mm). 5. Befestigen Sie die Schutzabdeckung D zur Lagerung des Kollimationsmoduls. 6. Montieren Sie nach der Demontage des Kollimationsmoduls den Faseradapter wieder an die Vorstufe.
- Schützen Sie die Apertur des Faseradapters durch die rote Kappe oder mit optischem Klebeband vor Staub.

D

19.2.4 Auswahl des Messobjektivs bei einem montierten HighYAG-Kollimationsmodul

Beispiel 1:

 $\begin{aligned} \lambda &= 1\ 030\ \text{nm} \\ M^2 &= 12 \\ d_{\text{Faserkern}} &= 100\ \mu\text{m} \\ f &= \text{Brennweite} \end{aligned}$

$$d_{foc} = d_{\text{Faserkern}} \cdot \frac{f_{LQM}}{f_{col}}$$

 $d_{_{foc}} = 299 \ \mu m$

Um eine Messung innerhalb von $\pm 3 z_R^2$ zu ermöglichen, sollte die berechnete Anzahl der belichteten Pixel im Fokus kleiner sein als 350.

Anzahl der belichteten Pixel bei 4,4 µm Pixelabstand = $\frac{d_{foc}}{4,4 \mu m} \cdot \beta$ (Vergrößerung des Messobjektivs 1 oder 5)

Messobjektiv (MOB) 1:1 --> 299 μm / 4.4 μm x 1 = ~68 \checkmark Messobjektiv (MOB) 5:1 --> 299 μm / 4.4 μm x 5 = 340 \checkmark

Beispiel 2:

$$\Theta = \frac{4 \cdot \lambda \cdot M^2}{\pi \cdot d_{\text{Faserkern}}}$$

 $\Theta = 150 \text{ mrad}$

$$d_{Rohstrahl} = \frac{\Theta \cdot f_{Koll}}{1 m}$$

 $d_{\text{Rohstrahl}} = \frac{150 \text{ mrad} \cdot 67 \text{ mm}}{1 \text{ m}} = 10,05 \text{ mm}$

Tab. 19.3: Anwendungsbereich der LQM+ Messobjektive

Messobjektiv (MOB) 1:1 --> ✓ Messobjektiv (MOB) 5:1 --> ✓

Die zwei Beispiele zeigen die Berechnung der Strahlparameter bei vorgegebener Brennweite des Kollimators. Die Berechnung kann auch mit anderen Kollimator-Brennweiten durchgeführt werden.

19.3 IPG-Kollimationsmodul bis 20 kW

GEFAHR

Schwere Verletzungen der Augen oder der Haut durch Laserstrahlung

Während der Messung wird der Laserstrahl auf das Gerät geleitet. Dabei entsteht gestreute oder gerichtete Reflexion des Laserstrahls (Laserklasse 4).

Der LaserQualityMonitor LQM+ darf in keiner der verfügbaren Konfiguration, ohne die folgenden Schutzmaßnahmen zu treffen betrieben werden. Auch bei einer gesteckten Faser im Kollimator oder im Faseradapter müssen sämtliche Schutzmaßnahmen eingehalten werden.

- Tragen Sie Laserschutzbrillen, die an die verwendete Leistung, Leistungsdichte, Laserwellenlänge und Betriebsart der Laserstrahlquelle angepasst sind.
- Tragen Sie geeignete Schutzkleidung und Schutzhandschuhe.
- Schützen Sie sich vor Laserstrahlung durch trennende Vorrichtungen (z. B. durch geeignete Abschirmwände).

PRIMES bietet als Option ein IPG-Kollimationsmodul an, das direkt an die 2. Vorstufe des LQM+ HP montiert werden kann.

Kenndaten					
Max. Leistung	20 kW (Mu	ılti mode)			
	5 kW (Sing	le mode)			
Brennweite	100 mm	120 mm	160 mm	180 mm	200 mm
Zulässige Divergenz	220 mrad	190 mrad	140 mrad	110 mrad	110 mrad
Design-Wellenlänge	1 070 nm				
Lichtleitfaser-Stecker	HLC 8 unc	HLC 16			

Tab. 19.4: Spezifikationen des IPG-Kollimationsmoduls bis 20 kW

Zur Messung eines aus einer Faser austretenden divergenten Strahls steht es dem Anwender frei, den LQM+ HP (20 kW) mit einem beliebigen Kollimator zu kombinieren, der für den erforderlichen Leistungsbereich geeignet ist und ein Minimum an Artefakten erzeugt.

Zum Zeitpunkt der Ausgabe (August 2018) ist uns nur ein Zulieferer (IPG Photonics) bekannt, der Kollimatoreinheiten mit einer Spezifikation von 20 kW liefert. Optional kann PRIMES den LQM+ HP mit einem Kollimator dieses Zulieferers kombinieren.

In der folgenden Tabelle sind die verfügbaren Kollimatoren dieser Quelle sowie die numerische Apertur aufgelistet, die bei einer Kombination mit dem LQM+ HP (20 kW) gemessen werden kann.

19.3.1 Mögliche Kombinationen des LaserQualityMonitor LQM+ HP (20 kW) mit IPG-Kollimatoren

Mögliche Kombinationen des LQM+ HP (20 kW) mit IPG-Kollimatoren und die daraus resultierende numerische Apertur (NA) bei einer Messung. Der Farbcode entspricht dem resultierenden Durchmesser des kollimierten Lichts.

	(Vollwinkel)	Fokus (Kollimator) / mm								
NA	Divergenz / rad	100	120	160	180	200				
0,03	0,0600	6,00	7,20	9,60	10,80	12,00				
0,035	0,0700	7,00	8,40	11,20	12,60	14,00				
0,04	0,0800	8,00	9,60	12,81	14,41	16,01				
0,045	0,0900	9,01	10,81	14,41	16,21	18,01				
0,05	0,1000	10,01	12,01	16,02	18,02	20,02				
0,055	0,1100	11,01	13,22	17,62	19,82	22,03				
0,06	0,1200	12,02	14,42	19,23	21,63	24,04				
0,065	0,1301	13,02	15,63	20,84	23,44	26,05				
0,07	0,1401	14,03	16,84	22,45	25,25	28,06				
0,075	0,1501	15,04	18,05	24,06	27,07	30,08				
0,08	0,1601	16,05	19,26	25,67	28,88	32,09				
0,085	0,1702	17,06	20,47	27,29	30,70	34,11				
0,09	0,1802	18,07	21,68	28,91	32,52	36,14				
0,095	0,1902	19,08	22,90	30,53	34,35	38,16				
0,1	0,2003	20,09	24,11	32,15	36,17	40,19				

Hellgrün: Durchmesser geeignet für Single-Mode-Messung (< 2 mm \cdot mrad), Dunkelgrün: Durchmesser geeignet für Multi-Mode-Messung (> 2 mm \cdot mrad).

Abb. 19.4: Mögliche Kombinationen des LaserQualityMonitor LQM+ HP (20 kW) mit IPG-Kollimatoren

19.3.2 Verwendung der Messobjektive 1:1 und 5:1

Durch den Einsatz von Messobjektiven mit zwei verschiedenen Vergrößerungen wird der Bereich der messbaren Werte der Beugungsmaßzahl M² erweitert. Die folgende Tabelle zeigt eine Auflistung der Kombination von Strahldurchmessern und erreichbaren Werten der Beugungsmaßzahl M² und welches Messobjektiv für diese Kombination zu verwenden ist.

Dunkelgrau: Single-Mode-Strahl, Durchmesser zu groß. Hellgrau: Multi-Mode-Strahl, Fokusdurchmesser im inneren Strahlengang zu groß.

Beugungsmaßzahl M ²																	
		1	1,2	1,4	1,6	1,8	2	4	5	6	10	15	20	25	30	40	45
	8	42	51	59	67	76	84	169	211	253	422	633	844	1054	1265	1687	1898
	9	37	45	52	60	67	75	150	187	225	375	562	750	937	1125	1500	1687
_	10	34	40	47	54	61	67	135	169	202	337	506	675	844	1012	1350	1518
;	11	31	37	43	49	55	61	123	153	184	307	460	613	767	920	1227	1380
2	12	28	34	39	45	51	56	112	141	169	281	422	562	703	844	1125	1265
D	13	26	31	36	42	47	52	104	130	156	260	389	519	649	779	1038	1168
	14	24	29	34	39	43	48	96	121	145	241	362	482	603	723	964	1085
D	15	22	27	31	36	40	45	90	112	135	225	337	450	562	675	900	1012
5	16	21	25	30	34	38	42	84	105	127	211	316	422	527	633	844	949
Ξ	17									119	198	298	397	496	595	794	893
į	18									112	187	281	375	469	562	750	844
	19									107	178	266	355	444	533	710	799
	20									101	169	253	337	422	506	675	759
	21									96	161	241	321	402	482	643	723
	22									92	153	230	307	383	460	613	690

Tab. 19.5: Verwendung der Messobjektive 5:1 (dunkelgrün) und 1:1 (hellgrün)

Die Zahlen entsprechen dem Fokusdurchmesser (in µm) im inneren Strahlengang, der weniger als 700 µm betragen muss. Bis zu einer inneren Fokusgröße von 1,2 mm ist eine Messung mit höherer Messunsicherheit (gelb) möglich (< 10 % Durchmesserabweichung, weniger als 3 Rayleighlängen des Messbereichs in z-Richtung verfügbar).

19.3.3 Maximale Leistung

Diese Tabelle stellt eine Zusammenfassung der obigen Tabellen dar und zeigt eine Auflistung der maximalen Leistung, die der LQM+ HP (20 kW) als eine Funktion der Beugungsmaßzahl M² und des Strahldurchmessers messen kann.

Beugungsmaßzahl M ²																	
		1	1,2	1,4	1,6	1,8	2	4	5	6	10	15	20	25	30	40	45
8	8	1,5	1,5	1,5	1,5	1,5	1,5	2,0	3,0	4	4	4	4	4			
	9	2,0	2,0	2,0	2,0	2,0	2,0	2,5	4,0	5	5	5	5	5	5		
ج ع	10	2,5	2,5	2,5	2,5	2,5	2,5	3,5	4,5	6	6	6	6	6	6		
E pg	11	3,0	3,0	3,0	3,0	3,0	3,0	3,5	5,5	7	7	7	7	7	7		
thc/	12	3,5	3,5	3,5	3,5	3,5	3,5	4,5	7,0	9	9	9	9	9	9	9	
essel 13	13	4	4	4	4	4	4	5,5	7,5	10	10	10	10	10	10	10	10
	14	5	5	5	5	5	5	7	9	12	12	12	12	12	12	12	12
shn Bht	15	5	5	5	5	5	5	8	11	14	14	14	14	14	14	14	14
n n	16	5	5	5	5	5	5	9	12	16	16	16	16	16	16	16	16
₽₽	17									18	18	18	18	18	18	18	18
S at	18									20	20	20	20	20	20	20	20
19 50 (V) 20	19									20	20	20	20	20	20	20	20
	20									20	20	20	20	20	20	20	20
	21									20	20	20	20	20	20	20	20
	22									20	20	20	20	20	20	20	20

Tab. 19.6: Maximale Leistung

19.4 Optischer Pfad im LQM+ HP (mit IPG-Kollimator)

Abb. 19.5: Optischer Pfad im LQM+ HP (mit IPG-Kollimator)

Länge des optischen Pfades (_____):

Erste Vorstufe <--> LQM+ = 25 mm + 69,3 mm = 94,3 mm Zweite Vorstufe <--> LQM+ = 25 mm + 110,8 + 61 mm = 196,8 mm

20 Formeln und Algorithmen zur Rohstrahlrückberechnung

Zur Berechnung der Rohstrahlparameter aus den gemessenen Strahlparametern des Fokus wird der in der Norm ISO 11146 beschriebene Formelsatz verwendet. Index F kennzeichnet die Strahlparameter des Fokus.

Abb. 20.1: Rohstrahlrückrechnung

Strahltaillenradius im Rohstrahl

$$w_0 = \frac{f}{\sqrt{z_{RF}}^2 + \Delta^2} \cdot w_{0F}$$

Fernfelddivergenz im Rohstrahl

$$\Theta = \frac{\Theta_F \cdot \sqrt{z_{RF}^2 + \Delta^2}}{f}$$

Lage der Strahltaille im Rohstrahl

$$z_0 = \frac{f^2}{z_{RF}^2 + \Delta^2} \cdot \Delta + f$$

Rayleighlänge im Rohstrahl:

$$z_{R} = \frac{f^{2}}{z_{RF}^{2} + \Delta^{2}} \cdot z_{RF}$$

Mit der Fokuslagendifferenz

$$\Delta = z_{0F} - z_{ref}$$

Strahldurchmesser auf der Fokussierlinse

$$d_L = \Theta_F \cdot \left(f + z_{ref} - z_{0F} \right)$$