

Originalbetriebsanleitung

BeamControlSystem

BCS

Hardware- und Softwareinterface PROFIBUS

Inhaltsverzeichnis

1	GRUNDLEGENDE SICHERHEITSHINWEISE	5
2	SYMBOLERKLÄRUNG	7
3	PRIMES - DAS UNTERNEHMEN	8
4	EINLEITUNG	9
	4.1 Laserstrahlvermessung	
5	SYSTEMBESCHREIBUNG	10
6	BEDINGUNGEN AM EINBAUORT	11
7	ANSCHLÜSSE	12
8	MONTAGE	13
	8.1 Einbau in die Laseranlage	
	8.1 Ausrichten zur Laserstrahlachse	
	8.2 Befestigung	
9	MECHANISCHE ANSCHLÜSSE	17
	9.1 Kühlkreissystem	
	9.1.1 Voraussetzungen	
	9.1.2 Anschließen	
	9.2 Pressluft	
	9.3 Schutzgasanschluss	
10	ELEKTRISCHE ANSCHLÜSSE	19
	10.1 PROFIBUS - Daten	
	10.2 PROFIBUS - Spannungsversorgung	
	10.3 PROFIBUS Status-LEDS	
	10.5 Ethernetanschluss	21
	10.6 Externer Sicherheitskreis (Safety Circuit)	
11	PROFIBUS	23
	11.1 Schnittstellenbeschreibung	
	11.2 Gerätestammdatei (GSD-Datei)	
	11.3 Busadresse	24
	11.3.1 Busadresse ändern mit der SPS-Software	
	11.4. Profibus Begisterstruktur beim BCS	25 27
	11.4.1 Output-Register Steuerung (Command-Register)	
	11.4.2 Input-Register Steuerung (Status)	
	11.4.3 Fehlerregister	
	11.4.4 Inputregister Ergebnisse	
12	ETHERNETKONFIGURATION	30
	12.1 Verbindung zum PC aufbauen	
	12.2 IP-Adresse ändern	
	12.3 IP-Adresse automatisch beziehen	
13	MESSBETRIEB	34
	13.1 Messablauf 13.2 Messablauf im Detail	
4.4		~~~
14		37
	14.1 DENUTZEREDENEN	
	14.3 Speicherort der Messwerte	
	-F	

	14.4	Automatischer Skriptablauf	
		14.4.1 Konfigurationsdatei bearbeiten	
		14.4.2 Globale Einstellungen	
15	AUSE	BAU AUS DER LASERANLAGE	43
16	WAR	TUNG	43
17	MASS	SNAHMEN ZUR PRODUKTENTSORGUNG	43
18	ABMI	ESSUNGEN	44
19	TECH	INISCHE DATEN	46
20	EINB	AUERKLÄRUNG	48
21	ANH	ANG	49
	21.1	LDS-Installation für den automatischen Messbetrieb	
		21.1.1 Software installieren	
		21.1.2 LDS für die Gerätekommunikation konfigurieren	
	21.2	Voreinstellungen für die Messprogramme	
	21.3	Initialisierungsdatei konfigurieren	
	21.4	Messprogramme konfigurieren	
	21.5	Bewertungsparameter konfigurieren	
		21.5.1 Bewertungsdatei anzeigen	
	21.6	Automatischer Skriptbalauf	

1 Grundlegende Sicherheitshinweise

Bestimmungsgemäße Verwendung

Das BeamControlSystem (BCS) ist ausschließlich dazu gebaut, Messungen im oder in der Nähe des Strahlenganges von Hochleistungslasern durchzuführen. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß.

Zur Gewährleistung eines sicheren Betriebes darf das BCS nur nach den Angaben des Herstellers betrieben werden.

Das Benutzen des BCS für nicht vom Hersteller spezifizierten Gebrauch ist untersagt und kann zu gesundheitlicher Gefährdung bis hin zu tödlichen Verletzungen führen. Das BCS darf nur in der Art und Weise eingesetzt werden, aus der keine potentielle Gefahr für Menschen entsteht.

Das BCS selbst emittiert keine Laserstrahlung. Jedoch wird während der Messung der Laserstrahl durch das Gerät geleitet. Dabei kann Streustrahlung entstehen. Deshalb sind die geltenden Sicherheitsbestimmungen zu beachten und erforderliche Schutzmaßnahmen zu treffen.

Geltende Sicherheitsbestimmungen beachten

Die Inbetriebnahme ist solange untersagt, bis sichergestellt wurde, dass die gesamte Maschine, in welche das BCS eingebaut ist, den Bestimmungen der EG-Richtlinie 2006/42/EG und des Laser-Strahlenschutzes u. a. DIN EN ISO 12254, DIN EN 60825 und TROS Laserstrahlung (Technische Regeln zur Arbeitsschutzverordnung zu künstlicher optischer Strahlung) und ihren Durchführungsanweisungen entspricht.

Erforderliche Schutzmaßnahmen treffen

Wenn sich Personen in der Gefahrenzone sichtbarer oder unsichtbarer Laserstrahlung aufhalten, z. B. an nur teilweise abgedeckten Lasersystemen, offenen Strahlführungssystemen und Laserbearbeitungsbereichen, sind folgende Schutzmaßnahmen zu treffen:

- Tragen Sie Laserschutzbrillen, die an die verwendete Laserwellenlänge angepasst sind.
- Schützen Sie sich vor direkter Laserstrahlung, Streureflexen sowie vor Strahlen, die durch die Laserstrahlung generiert werden (z. B. durch geeignete Abschirmwände oder auch durch Abschwächung dieser Strahlung auf ein unbedenkliches Niveau).
- Verwenden Sie Strahlführungs- bzw. Strahlabsorberelemente, die keine gefährlichen Stoffe freisetzen sobald sie mit der Laserstrahlung beaufschlagt werden und die dem Strahl hinreichend widerstehen können.
- Installieren Sie Sicherheitsschalter und/oder Notfallsicherheitsmechanismen, die das unverzügliche Schließen des Verschlusses am Laser ermöglichen.
- Befestigen Sie das Messgerät stabil, um eine Relativbewegung des Gerätes zur Strahlachse zu verhindern und somit die Gefährdung durch Streustrahlung zu reduzieren (das ist auch notwendig, um eine optimale Performance bei der Messung sicherzustellen).

Qualifiziertes Personal einsetzen

Alle Benutzer des BCS müssen in die Bedienung des Messgerätes eingewiesen sein und grundlegende Kenntnisse über die Arbeit mit Hochleistungslasern, Strahlführungssystemen und Fokussiereinheiten haben.

Umbauten und Veränderungen

Das BCS darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Jede Veränderung schließt eine Haftung unsererseits für resultierende Schäden aus.

Haftungsausschluss

Der Hersteller und der Vertreiber der Messgeräte schließt die Haftung für Schäden oder Verletzungen jeder Art aus, die durch den unsachgemäßen Gebrauch der Messgeräte oder die unsachgemäße Benutzung der zugehörigen Software entstehen. Der Käufer und der Benutzer verzichten sowohl gegenüber dem Hersteller als auch dem Lieferanten auf jedweden Anspruch auf Schadensersatz für Schäden an Personen, materielle oder finanzielle Verluste durch den direkten oder indirekten Gebrauch der Messgeräte.

2 Symbolerklärung

In dieser Dokumentation wird auf Restgefahren mit folgenden Symbolen und Signalworten hingewiesen:

GEFAHR

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

\Lambda WARNUNG

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

Bedeutet, dass eine leichte Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

Bedeutet, dass Sachschaden entstehen **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Am Gerät selbst wird auf Gefahren mit folgenden Symbolen hingewiesen:

Warnung vor Handverletzungen

Vor Inbetriebnahme die Betriebsanleitung und insbesondere die Sicherheitshinweise lesen und beachten!

Weitere Symbole, die nicht sicherheitsrelevant sind:

Hier finden Sie nützliche Informationen und hilfreiche Tipps.

Mit der CE-Kennzeichnung garantiert der Hersteller, dass sein Produkt den Anforderungen der relevanten EG-Richtlinien entspricht.

Handlungsaufforderung

3 PRIMES - das Unternehmen

PRIMES ist ein Hersteller von Messgeräten zur Laserstrahlcharakterisierung. Diese Geräte werden zur Diagnostik von Hochleistungslasern eingesetzt. Das reicht von CO₂-Lasern über Festkörperlaser bis zu Diodenlasern. Der Wellenlängenbereich vom Infrarot bis zum nahen UV wird abgedeckt. Ein großes Angebot von Messgeräten zur Bestimmung der folgenden Strahlparameter steht zur Verfügung:

- die Laserleistung
- die Strahlabmessungen und die Strahllage des unfokussierten Strahls
- die Strahlabmessungen und die Strahllage des fokussierten Strahls
- die Beugungsmaßzahl, M²
- die Polarisation des Laserstrahls

Entwicklung und Produktion der Messgeräte erfolgt im Hause PRIMES. So werden optimale Qualität, exzellenter Service und kurze Reaktionszeit sichergestellt. Das ist die Basis, um alle Anforderungen unserer Kunden schnell und zuverlässig zu erfüllen.

Max-Planck-Str. 2 - 64319 Pfungstadt - info@primes.de - www.primes.de

4 Einleitung

4.1 Laserstrahlvermessung

Die Fertigung mit Laserstrahlung kann durch eine Kontrolle der Laserstrahlparameter wirkungsvoll überwacht werden. Der Laserstrahl wird im Wesentlichen charakterisiert durch:

- die Strahlleistung
- die Strahlabmessungen und die Strahllage des unfokussierten Strahls
- die Strahlabmessungen und die Strahllage im Fokus
- die Polarisation des Laserstrahls.

Diese grundlegenden Laserstrahlparameter haben großen Einfluss auf die Ergebnisse der Lasermaterialbearbeitung. Um eine reproduzierbare Prozessqualität zu erhalten, ist es notwendig, alle Veränderungen der Strahlparameter zu erkennen. Veränderungen können dabei entstehen sowohl durch:

laserinterne Ursachen, z. B.

- die Alterung und Verunreinigung der optischen Komponenten
- die Dejustierung des Resonators

als auch durch:

Effekte im Strahlführungssystem oder der Fokussiereinheit, z. B.

- die Verschmutzung oder die Dejustierung von Spiegeln oder Linsen
- Spuren von organischen Gasen in der Luft (Thermal Blooming)

Das Bearbeitungsergebnis bei der Fertigung mit Lasern hängt im Allgemeinen von der Strahlleistung sowie der Leistungsdichte im Fokusbereich ab. Darüber hinaus muss die Lage des Fokuspunktes bezüglich der Bearbeitungszone exakt bekannt sein. Variationen dieser Sollgrößen gehen häufig einher mit Einbußen bei der Prozessgeschwindigkeit oder der Prozessqualität.

Die periodischen Messungen der Laserstrahlparameter erlauben eine zuverlässige Überwachung des Werkzeugs Laserstrahl. Dies ist eine der wesentlichen Grundlagen für eine reproduzierbare Fertigung mit Laserstrahlung und somit für die Sicherung der Produktqualität.

PRIMES hat dazu Messsysteme konzipiert, die auch in einem industriellen Umfeld die notwendigen Messungen durchführen können. Eine Verbindung zur Anlagensteuerung wird unterstützt und die Möglichkeit zu einer lückenlosen Dokumentation der Ergebnisse ist so sichergestellt.

5 Systembeschreibung

Das BeamControlSystem besteht aus den Messgeräten FocusMonitor und CompactPowerMonitor sowie einer SPS-Interface–Router-Kombination. Diese Komponenten sind in einem stabilen Aluminiumgehäuse eingebaut. Ein pneumatischer Verschluss schützt den Strahleintritt.

Mit den Messgeräten können zyklisch die Strahlparameter Leistung, Strahllage und Strahlabmessungen sowie die Strahlverteilung im Fokus geprüft werden. Die SPS-Anbindung stellt einen reibungslosen automatisierten Messablauf sicher.

Die beigefügten Anleitungen zum FocusMonitor und zum CompactPowerMonitor beschreiben im Detail den Betrieb der einzelnen Messgeräte.

Für den Betrieb der gesamten Messstation gelten die Sicherheitshinweise zum FocusMonitor und CompactPowerMonitor sinngemäß.

Abb. 5.1: Schematischer Aufbau des BeamControlSystems

Abb. 5.2: Prinzipbild zur elektrischen Integration des BCS

Die Messstation ist über vier elektrische Anschlüsse nach außen verbunden:

- 1. Über PROFIBUS mit der Anlage. Darüber erfolgen die Spannungsversorgung sowie die Kommunikation zwischen dem BCS und der Anlagensteuerung.
- 2. Über Ethernet werden die Daten vom BCS zum Bedienrechner übertragen.
- 3. Der Interlocksignal-Anschluss zum Stoppen des Lasers im Fehlerfall.
- 4. Eine weitere Verbindung bildet die 9-polige D-Sub-Buchse. Sie kann optional zur Kommunikation mit dem Bedienrechner mittels RS485-RS232-Schnittstellenkonverter genutzt werden.

Für den Betrieb der Messstation ist der Anschluss von Kühlwasser sowie Pressluft notwendig.

6 Bedingungen am Einbauort

- Das Messgerät darf nicht in kondensierender Atmosphäre betrieben werden. Die Luftfeuchte ist zu berücksichtigen, um Kondensate innerhalb und außerhalb des Gerätes zu vermeiden.
- Die Umgebungstemperatur muss über dem Gefrierpunkt liegen.
- Die Temperatur des Kühlwassers darf nicht unterhalb des Taupunktes liegen.

PRIMES

7 Anschlüsse

Abb. 7.1: Übersicht der Anschlüsse

8 Montage

8.1 Einbau in die Laseranlage

Beachten Sie bitte beim Einbau folgende Punkte:

- 1. Schalten Sie zuerst die Laserquelle aus.
- 2. Stellen Sie sicher, dass alle bewegliche Teile, z. B. Roboterarme, etc. im Stillstand sind und dass diese nicht unbeabsichtigt in Bewegung gebracht werden können.
- 3. Prüfen Sie vor der Montage die Platzverhältnisse, insbesondere den benötigten Freiraum für den ausschwenkenden Verschluss (siehe Kapitel "18 Abmessungen" auf Seite 44 f).
- 4. Richten Sie das BCS im Strahlengang des Lasers so aus, dass der Laserstrahl die Apertur mittig trifft.
- 5. Befestigen Sie das BCS unverrückbar in dieser Position (siehe "8.2 Befestigung" auf Seite 15).
- 6. Schließen Sie das BCS elektrisch an.
- 7. Verbinden Sie den Interlockanschluss mit der Lasersteuerung und prüfen Sie die korrekte Funktion.
- 8. Installieren Sie die Wasserkühlung.
- 9. Installieren Sie den Pressluftanschluss.
- 10. Installieren Sie den Schutzgasanschluss.

8.1 Ausrichten zur Laserstrahlachse

Richten Sie das Gehäuse zunächst mit den vier Justierschrauben in der Bodenplatte ungefähr aus (z. B. mit Hilfe einer Wasserwaage).

Für die genaue Einmessung mit einer Messuhr ist in die Gehäuseoberfläche eine plane Nut in x- und y-Richtung eingefräst (siehe Abb. 8.1).

Abb. 8.1: Nutabmessungen und Fadenkreuzposition, Ansicht von oben

Richten Sie das Gehäuse so aus, dass die Mittelpunkte von Laserstrahl und Apertur übereinstimmen (siehe Abb. 8.2).

Als Ausrichthilfe ist im Gehäuse ein Fadenkreuz eingraviert¹⁾. Die Abstände des Fadenkreuzes zur Mitte der

¹⁾ Je nach Kundenanforderung können auch andere Einrichtmarkierungen vorhanden sein.

Apertur (x/y-Achse) sowie der Abstand der Messspitze im Gerät (z-Achse) sind im Dokument "Tool center point-Kalibrierung" und auf dem Typenschild angegeben. Da der x-Abstand in geringem Maß von der Drehzahl der Messspitze abhängig ist, sind hier mehrere x-Werte für die verschiedenen Betriebsdrehzahlen aufgeführt.

Abb. 8.2: Abstände Aperturmitte - Fadenkreuzmitte

Der FocusMonitor ist im BCS über Kopf eingebaut. Sie müssen deshalb in der Bediensoftware (LDS) im Menü "Messungen → Sensorparameter" das Kontrollkästchen "Gedrehte Messspitze" aktivieren.

8.2 Befestigung

WARNUNG

Verletzungsgefahr

Wird das Messgerät aus der eingemessenen Position bewegt, kann im Messbetrieb Streustrahlung entstehen.

Befestigen Sie das Gerät so, dass es durch unbeabsichtigtes Anstoßen oder Zug an den Kabeln oder Schläuchen nicht bewegt werden kann.

In der Bodenplatte des BCS-Gehäuses befinden sich insgesamt acht Gewindebohrungen M6 für die Befestigung auf einer kundenseitigen Halterung. Befestigen Sie das Gehäuse mit mindestens vier Schrauben. Wir empfehlen Schrauben der Festigkeitsklasse 8.8 und ein Anziehdrehmoment von 20 N·m.

ACHTUNG

Beschädigungsgefahr

Durch zu lange Schrauben können innere Bauteile beschädigt werden.

Bemessen Sie die Befestigungsschrauben so, dass sie maximal 15 mm ins Gehäuse hineinragen.

Die Gesamtlänge der Schrauben ist von den Dimensionen der kundenseitigen Halterung abhängig.

Abb. 8.3: Befestigungsbohrungen, Ansicht von unten

ACHTUNG

Beschädigungsgefahr

Wenn Sie aus Platzgründen die Ringschrauben entfernen, können Schmutzpartikel ins Gehäuse gelangen.

Verschließen Sie die Gewindebohrungen mit passenden Schrauben (M8) oder mit entsprechenden Kunststoffeinsätzen.

9 Mechanische Anschlüsse

9.1 Kühlkreissystem

9.1.1 Voraussetzungen

Die Anschlüsse am BCS sind für Schlauch-Außendurchmesser von 12 mm vorgesehen. Für den zuverlässigen Betrieb ist ein Wasserdurchfluss von minimal 4 I/min und maximal 8 I/min erforderlich.

Im Kühlkreis befindet sich ein Absperrventil. Um das Ventil zu schalten, muss die Pressluft angeschlossen und die Versorgungsspannung eingeschaltet sein.

Betreiben Sie das BCS nur in nicht-kondensierender Atmosphäre. Die Temperatur des Kühlwassers darf deshalb nicht unterhalb der Umgebungstemperatur liegen.

Kühlen Sie das Gerät nur während des Messbetriebs. Wir empfehlen, die Kühlung ca. 2 Minuten vor der Messung zu starten und ca. 1 Minute nach der Messung zu beenden.

ACHTUNG

Beschädigungsgefahr

Wenn Sie bei der Kühlkreisinstallation mit Dichtband arbeiten (z. B. Teflon oder Hanf) dürfen keine Teile davon in die Turbine gelangen! Sie könnten den Lauf hemmen bzw. den Durchfluss völlig stoppen.

Spülen Sie Ihr Leitungssystem gründlich vor dem Anschluss.

Die Teile des BCS, die in Kontakt mit dem Kühlwasser sind, bestehen aus Kupfer, Messing oder rostfreiem Stahl. Verbinden Sie das Gerät deshalb nicht mit einem Aluminiumkühlkreislauf! Das kann zur Korrosion des Aluminiums auf Grund der unterschiedlichen chemischen Potentiale führen. Setzen Sie dem Kühlwasser keine Additive, insbesondere keine Frostschutzmittel zu. Diese können die Wärmeleitfähigkeit signifikant ändern und damit das Messergebnis verfälschen.

9.1.2 Anschließen

- 1. Entfernen Sie die Verschlussstopfen des Kühlkreislaufes und bewahren Sie diese auf.
- 2. Schließen Sie Vorlauf (In) und Rücklauf (Out) des Gerätes an.

Ein Betrieb mit stark entionisiertem Wasser (DI-Wasser) ist nur mit entsprechenden Anschlussstücken möglich – bitte informieren Sie uns vor dem Kauf des Gerätes.

9.2 Pressluft

Die Pressluft wird benötigt, um den Verschluss und das Absperrventil des Kühlkreises zu öffnen oder zu schließen. Die Pressluft muss trocken und ölfrei sein!

Schließen Sie die Pressluft über einen Kunststoffschlauch mit einem Außendurchmesser von 6 mm an. Es wird ein Druck von 4-8 bar benötigt. Benutzerspezifische Modifikationen sind möglich.

Optional ist eine Pressluftspülung des Gehäuses möglich. Planen Sie eine Flussrate von typisch 10 bis 20 l/ min ein, je nach Anwendung aber auch mehr.

9.3 Schutzgasanschluss

Die Anschlüsse am Gerät sind für Schlauch-Außendurchmesser von 6 mm vorgesehen.

ACHTUNG

Beschädigungsgefahr der Messspitze durch Plasmazündung oder Schmutzpartikel aus der Umgebung.

Beim Messen von sehr großen Leistungsdichten¹⁾ (NIR (900 nm-1080 nm): 8-10 MW/cm²; IR (10,6 μ m): 20-30 MW/cm²) ist es möglich, dass auf der Oberfläche der Messspitze ein Plasma gezündet wird. Dadurch kann die Messspitze zerstört werden.

Spülen Sie das Gerät mit Schutzgas (Stickstoff, Helium oder Argon). Das Schutzgas muss trocken und ölfrei sein.

¹⁾ Siehe auch Benutzerhandbuch FocusMonitor, Kapitel "Auswahl der Detektoren und Messspitzen".

10 Elektrische Anschlüsse

10.1 PROFIBUS - Daten

Stecker In (Draufsicht Steckseite)		
2	Pin	Funktion
	1	Nicht belegt
	2	Signal A
	3	Nicht belegt
	4	Signal B
4	5	Nicht belegt
Steckerbezeichnung	Sensor-/Aktor derwand-/Sch TPE-Litze, 5 x	r-Einbaustecker, 5-polig, M12-SPEEDCON, B-kodiert, Vor- nraubmontage mit M16-Gewinde, positionierbar, mit 0,5 m x 0,34 mm ² (Phoenix Contact 1520013)

Tab. 10.1: Pinbelegung Profibus-Stecker

Buchse Out (Draufsicht Steckseite)		
1	Pin	Funktion
	1	+5 V
$4\left(\bigcirc \bigcirc 5 \bigcirc 2\right)^2$	2	Signal A
	3	ISOGND
	4	Signal B
3	5	Nicht belegt
Buchsenbezeichnung	Sensor-/Aktor Vorderwand-/3 0,5 m TPE-Lit	-Einbaubuchse, 5-polig, M12-SPEEDCON, B-kodiert, Schraubmontage mit M16-Gewinde, positionierbar, mit ze, 5 x 0,34 mm ² (Phoenix Contact 1520000)

Tab. 10.2: Pinbelegung Profibus-Buchse

Passendes Kabel (männl./weibl.): Bussystem-Kabel, PROFIBUS, 2-polig, PUR halogenfrei, violett RAL 4001, geschirmt, Stecker gerade M12-SPEEDCON, B-kodiert, auf Buchse gerade M12-SPEEDCON, B-kodiert, Kabellänge 2 m (Phoenix Contact 1518135).

10.2 PROFIBUS - Spannungsversorgung

Das Gerät wird über zwei fünfpolige Steckverbinder mit Spannung versorgt. Die beiden Steckverbinder sind intern 1:1 durchverbunden.

Power Stecker links (Draufsicht Steckseit	e)	
	Pin	Funktion
	1	GND Sensor
	2	GND Aktor
2 • • • 4	3	PE
3	4	+24 V (Sensor)
	5	+24 V (Aktor)
Steckerbezeichnung	Sensor-/Akto Vorderwandn 0,5 m PVC-L SACC-E-MIN (PhoenixCon	r-Einbaustecker, männlich, 5pol. 7/8" nontage mit Pg13,5-Gewinde itze 5 x 0,75 mm ² IMS-5CON-PG13/0,5 tact 1521452)

Tab. 10.3: Pinbelegung Versorgungsstecker

Power Buchse rechts (Draufsicht Steckse	eite)	
	Pin	Funktion
$5 \bigcirc 1$	1	GND Sensor
	2	GND Aktor
4 0 2	3	PE
3	4	+24 V (Sensor)
	5	+24 V (Aktor)
Buchsenbezeichnung	Sensor-/Akto Vorderwandr 0,5 m PVC-L SACC-E-MIN (PhoenixCon	r-Einbaustecker, weiblich, 5pol. 7/8" nontage mit Pg13,5-Gewinde itze, 5 x 0,75 mm ² IFS-5CON-PG13/0,5 tact 1521449)

Tab. 10.4: Pinbelegung Versorgungsbuchse

10.3 PROFIBUS Status-LEDs

LED	Farbe	Zustand	Bedeutung
Run	Grün	Leuchtet	Profibus ist angeschlossen
Stop	Gelb	Blinkt	Profibus ist nicht angeschlossen oder eine Busstörung liegt vor

10.4 PRIMES-Bus

D-Sub-Buchse, 9-polig (Draufsicht Stecks	seite)	
	Pin	Funktion
	1	GND
5 1	2	RS485 (+)
	3	+24 V
	4	Nicht belegt
	5	Nicht belegt
9 6	6	GND
	7	RS485 (–)
	8	+24 V
	9	Nicht belegt

Tab. 10.5: Pinbelegung PRIMES-Bus

10.5 Ethernetanschluss

Verbinden Sie das Gerät über ein Crossover-Kabel mit dem PC oder über ein Patchkabel mit dem Netzwerk.

Anschlussbuchse, 8-polig (Draut	fsicht Steck	seite)
	Pin	Funktion
	1	TX+
4 5	2	TX-
3 6	3	RX+
	4	Nicht belegt
2 7	5	Nicht belegt
1 8	6	RX-
	7	Nicht belegt
	8	Nicht belegt
Buchsenbezeichnung: Phoenix-Co	ntact 1404	548 VS-BH-M12FSX-10G-RJ45-90

Tab. 10.6: Pinbelegung Ethernetbuchse

10.6 Externer Sicherheitskreis (Safety Circuit)

Der externe Sicherheitskreis schützt das Gerät vor Schäden. Das Gerät kann beschädigt werden, wenn

- der Wasserdurchfluss zu gering ist
- der Laser bei noch geschlossenem Verschluss eingeschaltet wird

Liegt die Wassertemperatur im Normbereich und der Verschluss ist geöffnet, ist Pin 1 mit Pin 3 gebrückt. Ist die Betriebsbereitschaft nicht gegeben, ist Pin 1 mit Pin 2 gebrückt. Die Pins des Sicherheitskreis-Steckers sind potentialfrei.

ACHTUNG

Beschädigungsgefahr

Ist der Sicherheitskreis nicht angeschlossen, kann das Gerät durch Überhitzung beschädigt oder der noch geschlossene Verschluss durch den Laserstrahl zerstört werden.

Schließen Sie die Lasersteuerung so an Pin 1 und Pin 3, dass bei einer Unterbrechung dieser Verbindung der Laser abgeschaltet wird.

Ist der Sicherheitskreis freigegeben, leuchtet die grüne Kontroll-LED neben dem Anschlussstecker.

Stecker, 5-polig (Draufsicht Steck	seite)	
	Pin	Funktion
4 3	1	Bezugspin zu Pin 2 oder 3
	2	Wenn nicht betriebsbereit, mit Pin 1 gebrückt
	3	Wenn betriebsbereit, mit Pin 1 gebrückt
1 2	4	Nicht belegt
	5	Nicht belegt
Steckerbezeichnung	Hersteller: SACC-E-M	Phoenix Contact IS-5CON-M16/0,5 SCO – 1520055
Passendes Kabel	Phoenix C 1431717	ontact: Sensor-/Aktor-Kabel - SAC-5P-5,0-PVC/M12FS B-L -

Tab. 10.7: Pinbelegung des Sicherheitskreis-Steckers

Abb. 10.1: Schaltplan des Interlocksteckers

11 Profibus

11.1 Schnittstellenbeschreibung

Das BCS besitzt ein Profibus-Interface. Damit das BCS in eine Linienstruktur eingefügt werden kann, sind das Businterface als auch die Spannungsversorgung doppelt ausgeführt. Insgesamt existieren vier Schnittstellen:

- 2 x Profibus
- 2 x 24 V Spannungsversorgung (24 V ± 5 %, maximal 5 Ampere Stromaufnahme)

Die Daten sind in den Registern im Motorola-Format abgelegt. Das bedeutet, dass Highbytes zuerst abgelegt sind und auf den nächsten Registern die niederwertigeren Bytes folgen.

11.2 Gerätestammdatei (GSD-Datei)

Die GSD-Datei für das BCS hat den Namen PRI_0102.gsd und befindet sich auf dem mitgelieferten Datenträger. Abb. 11.1 zeigt die Einbindung der GSD-Datei unter Step7.

· · · · · · · · · · · · · · · · · · ·	
Station Bearbeiten Einfügen Zielsystem Ansicht E⊻tras Eenster Hilfe	
🖏 SIMATIC 300 Station (Konfiguration) PROJECTBCS Profibus	
PROFIBUS (1): DP-Mastersystem (1) 1 PS 307 10A 2 CPU 319-3 PN/DP X7 MPR/DP X3 PN-AD X3 Port 1 3	
	>
(3) BCS-DP	
Steckplatz DP-Kennung Bestellnummer / Bezeichnung E-Adresse A-Adresse Kommentar	
1 161 CommandsModul 2byteDut 256257	
2 151 StatusModul 8byteln 256263	
3 64 ResultsModul 64byteln 264327	

Abb. 11.1: Einbindung unter Step7

11.3 Busadresse

Die im Werk eingestellte Busadresse ist auf dem Typenschild angegeben. Diese Adresse können Sie bei Bedarf entweder mit der SPS-Software oder mit der LaserDiagnoseSoftware ändern.

11.3.1 Busadresse ändern mit der SPS-Software

Vergeben Sie im Step7-Manager die neue Busadresse (Menü Zielsystem → Profibus→ Profibusadresse vergeben).

	i	CIDES FIOTIDUS			Profit Standard
1 2 2 33 4 5 6 7 7 8 9 9 10 11	P530710A CPU 319-3 MODP MPX0P DP PNV0 Point 1	Ethernet(1) PROFINET-0-2	System (100)		PROFILUS OP PROFILUS A PROFILUS
A 10 10 10 10 10 10 10 10 10 10 10 10 10	igenschaften - DP-Slave		X		
Ste 1 2 3	genschaften - DP-Slave Algemein Pasametrieren Bestellnummer: Famile: Algemein DP-Slave Typ: BCS-DP Bezeichnung: BCS-DP	GSD-Datei (Typdate): PRI_0102.6SD	Kommentar Eigenschaften - PROFIBUS Schnittstell Algemein Parameter Adesse:	e BCS-DP	

Abb. 11.2: Einstellfenster Profibusadresse

11.3.2 Busadresse ändern mit der LaserDiagnoseSoftware

- 1. Installieren Sie die LaserDiagnoseSoftware (LDS) auf einem PC, der über die Netzwerkverbindung mit dem Gerät verbunden ist.
- 2. Starten Sie die Software und öffnen Sie das Menü Kommunikation>>Freie Kommunikation.
- 3. Wählen Sie im Feld *Mode* "TCP" aus.
- 4. Geben Sie im Feld *TCP* die IP-Adresse des Gerätes ein (die IP-Adresse ist auf dem Typenschild angegeben).
- 5. Klicken Sie auf Verbinden.
- 6. Aktivieren Sie das Kontrollkästchen **Bus-Protokoll schreiben** (das Protokoll kann beim Auftreten von Problemen sehr nützlich sein).

Freie Kommunikation			×
Mode Seriell O TCP O U	JSB-To-Seriell 📃 Zweite IP	Parity F	Primes Geräte Suchen
Serielle Schrufffulle Von 64 An 161	sdelay 01000	•	Senden
Von 64 An 168	Init 110	Ŧ	Senden
Von 64 An 113	ql	_	Senden
Hex Code:	Com Port:	•	Testen
TCP IP: 192.168.116.119	Port: 6001 Verbinde	n Schließ	en Speichern
MAC: 00 : 00 : 00	: 00 : 00 : 00 Mde IP	Lösche	IP IP Zuweisen
Befehl			Senden
IP: 192.168.116.82	Port: 6001		
Befehl			Senden
Bus monitor			
CONNECTED to 192.168.11 CONNECTED to 192.168.11	12.168.116.113 port 6001 16.119:6001		
Messdaten anzeigen	Löschen Copy Schließ	er 🔽 Bu	ıs-Protokoll schreiben

 Geben Sie in der Befehlsleiste folgendes Kommando ein (beachten Sie unbedingt die korrekte Eingabe des Leerzeichens *):

se0077*xyz

xyz ist hierbei der Platzhalter für die Profibusadresse, diese muss dreistellig eingegeben werden! Das Symbol * ist Platzhalter für ein Leerzeichen.

Beispiel: Profibusadresse ist $5 \rightarrow$ Eingabe: **se0077** 005

	TCP IP: 192.168.116.119 Port: 6001	Verbinden	Schließen	Speichern
Befehl	MAC: 00 : 00 : 00 : 00 : 00 : 00 : 00 : 0	Finde IP	Lösche IP	IP Zuweisen
	Befehl		Send	len
	Bus monitor - Connecting to Device ip 192.168.116.119 port 6001 CONNECTED to 192.168.116.119:6001 <- se0077 005 -> Readback c.k> Readback c.k> Calculating EEPROM into structure> Calculating structure CRC> Add: 00077 Wert: 005	Antwort		

8. Klicken Sie auf *Senden.* Die Antwort des Gerätes erscheint im Busmonitor in folgender Form: Adr: 00077 Wert: xyz

Damit ist die Adresse voreingestellt.

9. Schalten Sie das BCS aus und wieder ein. Nach diesem Neustart ist die Profibus-Adresse aktualisiert.

11.4 Profibus Registerstruktur beim BCS

Adr	Byte	Bit	Bedeutung
0			Kommandos bzw. Statusinformationen von Anlage
		0	Statusflag: Automatik-Modus ¹⁾
		1	Shutter öffnen
		2	Shutter schließen
		3	Wasserventil öffnen
		4	Wasserventil schließen
		5	Messprogramm: 1 (nur Leistungsmessung)
		6	Messprogramm: 2 (Kaustik- inkl. Leistungsmessung)
		7	Messprogramm: 3 (Reserve)
		8	Messprogramm: 4 (Reserve)
		9	Messung starten
		10	Messung abbrechen (Abort)
		11	Schutzgasventil öffnen
		12	
		13	
		14	
		15	

11.4.1 Output-Register Steuerung (Command-Register)

¹⁾ Muss gesetzt sein bei Anlagensteuerung eines Ablaufs oder einer Aktion (z. B. Shutter auf/zu).

11.4.2 Input-Register Steuerung (Status)

Adr	Byte	Bit	Bedeutung
0	0		Status-Informationen
		0	Shutter ist offen
		1	Shutter ist geschlossen
		2	Shutter wird gerade bewegt
		3	Shutter error (Position undefiniert / Timeout bei Shutter-Kommando)
		4	Wasserventil ist offen
		5	Interlock-Kreis geschlossen (alles OK)
		6	Interlock Shutter OK (Shutter ist offen)
		7	Interlock CPM OK (kein Interlock-relevanter CPM-Fehler)
	1	8	LDS idle (Skript läuft; LDS ist bereit, Kommandos zu empfangen)
		9	Kommando an Anlage: Laser an!
		10	Messung läuft
		11	Messung erfolgreich beendet
		12	Messung mit Fehler beendet
		13	Ergebnis iO
		14	Ergebnis niO
		15	

11.4.3 Fehlerregister

Adr	Byte	Bit	Bedeutung
1			Fehlerregister FM und PM
		0	
		1	
		2	
	2	3	
	2	4	
		5	
		6	
		7	
		8	Informationen in Register 16 bis 18 und CPM-Fehlerflags sind nicht aktuell, da statuscollect deaktiviert
		9	Datavalid im CPM-al-Frame auf False gesetzt
		10	Durchfluss zu niedrig
	3	11	Kühlwassertemperatur am Einlauf zu hoch
		12	Kühlwasser-Temperaturdifferenz zu hoch
		13	Kühlwassertemperatur am Auslauf zu hoch
		14	
		15	

Adr	Byte	Bit	Bedeutung
2			Fehlerregister BCS und LDS
		0	Automatic-Bit gesetzt bei Shutter/Wasserventil-Kommando aus LDS oder Automatic-Bit nicht gesetzt bei Shutter/Wasserv./Abort-Komd. von Anlage
		1	Gleichzeitige "Shutter öffnen"- und "Shutter schließen"- Kommandos von Anlage
	1	2	Gleichzeitige "Wasserventil öffnen"- und "Wasserventil schließen"- Kommandos von Anlage
4	-	3	
		4	
		5	
		6	
		7	
		8	Fataler Skriptfehler
		9	
		10	
	_	11	
	5	12	
		13	
		14	
		15	

11.4.4 Inputregister Ergebnisse

Adr	Byte	Einheit	Bedeutung
4 5	8 11	μm	Radius
6 7	12 15	μm	PosX
8 9	16 19	μm	PosY
1011	20 23	μm	PosZ
12 13	24 27	* 1000	M ²
14 15	28 31	W	Leistung gemittelt
16 17	32 35	W	Leistung aktuell
18 19	36 39	1/100 °C	Kühlwassertemperatur
20 21	40 43	1/100 l/min	Durchfluss
22 35	44 71		Reserve

Jeweils 32 Bit - niedrige Adresse enthält höherwertiges Datenwort

1

12 Ethernetkonfiguration

Das BeamControlSystem hat eine feste IP-Adresse die auf dem Typenschild angegeben ist.

Der PC muss ebenfalls eine feste IP-Adresse im gleichen Subnet haben, z. B. :

IP-Adresse: 192.168.116.80 Subnetzmaske: 255.255.255.0

Eigenschaften von Internetprotokol	(TCP/IP)	? ×
Allgemein		
IP-Einstellungen können automatisch z Netzwerk diese Funktion unterstützt. W den Netzwerkadministrator, um die gee beziehen.	ugewiesen werden, wenn das /enden Sie sich andernfalls an igneten IP-Einstellungen zu	
C IP-Adresse automatisch beziehen	ı	
- Folgende IP-Adresse verwenden:		
IP-Adresse:	192.168.116.80	
Subnetzmaske:	255.255.255.0	
Standardgateway:		
C DNS-Serveradresse automatisch	beziehen	_
Folgende DNS-Serveradressen v	erwenden:	
Bevorzugter DNS-Server:		
Alternativer DNS-Server:		

12.1 Verbindung zum PC aufbauen

- 1. Starten Sie die Primes LaserDiagnoseSoftware.
- 2. Öffnen Sie das Menü Kommunikation>>Freie Kommunikation.
- 3. Wählen Sie den Mode "TCP" aus (die Option "Zweite IP" darf nicht aktiviert sein!).
- 4. Geben Sie im Feld "TCP" die IP-Adresse Ihres Gerätes ein.
- 5. Klicken Sie auf die Schaltfläche "Verbinden" (im Busmonitor erscheint "Connected").
- 6. Klicken Sie auf die Schaltfläche "Speichern" (die Konfiguration wird gespeichert und muss beim Neustart der Software nicht erneut eingegeben werden)

Freie Kommunition		×
Seriel TCP CUSB-To-Seriell Zweite IP	Parity Primes Geräte	Suchen
Serielle Schnittstelle		
Von 64 An 161 sdelay 01000	- Sender	n
Von 64 An 168 Init 110	- Sender	n
Von 64 An 113 ql	- Sender	n
Hex Code: Com Port:	- Tester	n
TCP		
IP: 192 . 168 . 116 . 85 Port: 6001 Verbinden	Schließen Spe	aichern
MAC: 00 : 00 : 00 : 00 : 00 : 00 Finde IP	Lösche IP IP Z	uweise
Befehl	Senden	
IP: Port		
Befehl	Senden	

Abb. 12.1: Verbindung aufbauen im Menü Freie Kommunikation

12.2 IP-Adresse ändern

Sie können die voreingestellte IP-Adresse des Gerätes mit folgenden Befehlen im Menü *Kommunikation>>Freie Kommunikation* ändern:

IP-Adresse (Beispieladresse)	192.	168.	116.	85
	↑	\uparrow	Ŷ	↑
Befehle	se0050 ≭ xyz	se0051 ≭ xyz	se0052 * xyz	se0053 ≭ xyz

xyz sind hierbei Platzhalter für die IP-Adressbytes (Wertebereich 1-254), diese müssen immer dreistellig eingegeben werden!

Beispiel: die Zahl 85 ist mit 085 einzugeben.

Das Symbol ***** steht der Eindeutigkeit wegen für ein Leerzeichen.

Beispiel: Sie möchten die IP-Adresse von 192.168.116.85 auf 192.168.116.86 ändern.

- 1. Starten Sie die Primes LaserDiagnoseSoftware.
- 2. Öffnen Sie das Menü Kommunikation>>Freie Kommunikation.

- 3. Wählen Sie den Mode "TCP" aus (die Option "Zweite IP" darf nicht aktiviert sein!).
- 4. Geben Sie im Feld "TCP" die IP-Adresse Ihres Gerätes ein.
- 5. Klicken Sie auf die Schaltfläche "Verbinden" (im Busmonitor erscheint "Connected").
- 6. Aktivieren Sie das Kontrollkästchen *Bus-Protokoll schreiben* (das Protokoll kann beim Auftreten von Problemen sehr nützlich sein).
- Geben Sie im Eingabefeld *Befehl* folgendes Kommando ein (bitte beachten Sie unbedingt die korrekte Eingabe des Leerzeichens *):

se0053*086

- Klicken Sie auf Senden und warten Sie die Bestätigung im Busmonitor ab (in Abb. 12.2 "-> Adr:00053 Wert: 086")
- 9. Schalten Sie das Gerät aus und wieder ein. Nach diesem Neustart ist die IP-Adresse aktualisiert.

reie Kommunikation		×							
Seriell • TCP	USB-To-Seriell 🔲 Zweite IP 🛛	Parity Primes Geräte Suchen							
Serielle Schnittstelle Von 64 An 161	sdelay 01000	Senden							
Von 64 An 168	Init 110	▼ Senden							
Von 64 An 113	q	▼ Senden							
Hex Code:	Com Port:	Testen							
TCP IP: 192.168.116.85	Port: 6001 Verbinden	Schließen Speichern							
MAC: 00 ; 00 ; 00 Befehl se005	00 : 00 : 00 Finde IP	Lösche IP IP Zuweisen							
IP: 132.160.116.02	IP: 192.168.116.82 Port: 6001 Senden								
Bus monitor - Connecting to Device ip 192.168.116.85 port 6001 CONNECTED to 192.168.116.85:6001 <- se0053 086 -> Reading EEPROM into structure> Calculating structure CPC> Calculating structure CPC> Adr: 00053 Wert: 086 Bestätigung									
Messdaten anzeigen	Löschen Copy Schließer	Bus-Protokoll schreiben							

Abb. 12.2: Ändern der IP-Adresse im Menü Freie Kommunikation

12.3 IP-Adresse automatisch beziehen

Durch DHCP (Dynamic Host Configuration Protocol) ist die automatische Einbindung eines Gerätes in ein bestehendes Netzwerk ohne dessen manuelle Konfiguration möglich. Die DHCP-Funktion aktivieren Sie in der LaserDiagnoseSoftware mit dem Befehl:

se0054 * 001

- 1. Starten Sie die Primes LaserDiagnoseSoftware.
- 2. Öffnen Sie das Menü Kommunikation>>Freie Kommunikation.
- 3. Wählen Sie den Mode "TCP" aus (die Option "Zweite IP" darf nicht aktiviert sein!).
- 4. Geben Sie im Feld "TCP" die IP-Adresse Ihres Gerätes ein.
- 5. Klicken Sie auf die Schaltfläche "Verbinden" (im Busmonitor erscheint "Connected").
- 6. Aktivieren Sie das Kontrollkästchen *Bus-Protokoll schreiben* (das Protokoll kann beim Auftreten von Problemen sehr nützlich sein).
- Geben Sie im Eingabefeld *Befehl* folgendes Kommando ein (bitte beachten Sie unbedingt die korrekte Eingabe des Leerzeichens *):

se0054 * 001

- Klicken Sie auf Senden und warten Sie die Bestätigung im Busmonitor ab (in Abb. 12.3 "-> Adr:00054 Wert: 001").
- 9. Schalten Sie das Gerät aus und wieder ein. Nach diesem Neustart ist die DHCP-Funktion aktiv.

Abb. 12.3: DHCP aktivieren

Nach dem Neustart des Gerätes im Netz wir eine neue IP-Adresse angefordert und vom Server/Router automatisch zugewiesen. Die Funktion *FindIP* über die MAC-Adresse ist dann nicht ausführbar. Sollte keine Verbindung zum Netz bestehen (keine Antwort vom Server) wird im BCS bis zum wiederholten Neustart die statische IP-Adresse (siehe Typenschild) aktiviert.

Die DHCP-Funktion können Sie mit dem Befehl **se0054*000** deaktivieren.

13 Messbetrieb

ACHTUNG

Beschädigungsgefahr

Durch Hindernisse im Verfahrensbereich des Verschlusses kann dieser beim Öffnen/Schließen beschädigt werden.

Öffnen Sie zuerst den Verschluss und positionieren Sie erst dann den Fokussierkopf über der Messeinheit.

VORSICHT

Verletzungsgefahr

Gefahr durch bewegte und rotierende Teile

- Greifen Sie nicht in den Verfahrensbereich des Verschlusses, während dieser öffnet oder schließt.
- Greifen Sie nicht in die offene Apertur

Basis für jede Messung ist der Betrieb des Bedienrechners mit der zugehörigen LaserDiagnoseSoftware (LDS), die sich auf der mitgelieferten CD-ROM befindet.

Der Bedienrechner (nicht im Lieferumfang enthalten) wird über Ethernet mit dem BCS verbunden. Die Messungen können Sie entweder manuell vom PC aus starten oder automatisiert über eine Skriptsteuerung der Software und die Profibus-Anbindung ablaufen lassen. In beiden Fällen müssen Sie vorher die LaserDiagnoseSoftware installieren und starten.

Weitere Hinweise hierzu finden Sie im Benutzerhandbuch "FocusMonitor".

13.1 Messablauf

Der Messablauf lässt sich vereinfacht in folgende Schritte aufteilen:

- 1. Messbereitschaft herstellen
- 2. Messung durchführen
- 3. Messung auswerten

13.2 Messablauf im Detail

	Anlage			Skript			SPS-Board		
Funktion	E/A	Bit	Wert	E/A	Bit	Wert	E/A	Bit	Wert
"LDS idle" setzen				E	8	1			
"Messung läuft" zurücksetzen				E	10	0			
"Laser an!" zurücksetzen				E	9	0			
Automatikbetrieb aktivieren	Α	0	1						
Warten, bis "LDS idle" gesetzt	E	8	1						
"Shutter schließen" zurück- setzen	A	2	0						
"Shutter öffnen" setzen	A	1	1						
Öffnet Shutter							E	0	1
Warten, bis Shutter geöffnet	E	0	1						
"Wasserventil öffnen" setzen	Α	3	1						
Öffnet Wasserventil							E	4	1
Wenn Shutter offen und Durchfluss OK, wird Interlock zurückgesetzt							E	5 bis 7	1
Warten, bis Ventil geöffnet und alle Interlocks OK	E	4 bis 7	1						
Messprogrammanforderung									
setzen	A	5 oder 6	1						
"Messung starten" setzen	A	9	1						
"LDS idle" zurücksetzen				E	8	0			
Messprogrammanforderung lesen				A	5 bis 8				
Fehlerflags löschen									
				E	11 bis 14	0			
Ergebnisregister löschen				Reg	ister 4 bis 15	0			
"Messung läuft" setzen				E	10	1			
Setzen "Messung läuft" ab- warten (bleibt bis "Messung Ende" gesetzt)	E	10	1						
Messprogrammanforderung anlagenseitig zurücksetzen	А	5 oder 6	0						
"Messung starten" zurückset- zen	А	9	0						
"Laser an!" setzen				E	9	1			
"Laser an" durch BCS abwar- ten	E	9	1						
Laser einschalten (Leistung wird automatisch erkannt)									
Messung wird durchgeführt									
"Laser an!" zurücksetzen				E	9	0			
Warten, bis "Laser an" zurück- gesetzt	E	9	0						

Alle Signale und E/A-Definitionen sind aus Kundensicht beschrieben.

Tab. 13.1: Messablauf

	Anlage		Skript		SPS-Board				
Funktion	E/A	Bit	Wert	E/A	Bit	Wert	E/A	Bit	Wert
Laser ausschalten (autom. Er- kennung)									
Ergebnisregister schreiben				Regis	ter 4 bis 15	x			
"Ergebnis iO/niO" setzen				E	13 bis 14	0/1			
"Messung iO/niO" setzen				E	11 bis 12	0/1			
"Laser an!" zurücksetzen				E	9	0			
"Messung läuft" zurücksetzen				Е	10	0			
Warten, bis "Messung läuft" zurückgesetzt	E	10	0						
"Shutter öffnen" zurücksetzen	А	1	0						
"Shutter schließen" setzen	А	2	1						
Schließt Shutter							E	1	1
Sobald Shutter nicht mehr geöff- net, wird Interlock ausgelöst							E	5 bis 6	0
"Shutter geschlossen" abwarten	E	1	1						
"Wasserventil schließen" setzen	А	4	1						
Schließt Wasserventil							E	4	0
Warten, bis "Ventil geöffnet" und "Interlock CPM OK" zurückge- setzt	E	4 und 7	0						
Anlage kann jetzt Flags und Ergebnisse lesen	Register	r 0 bis 21	x						

Tab.11.1 Messablauf (Fortsetzung)

14 Laser Diagnose Software (LDS)

Das BCS wird mit der PC-Software "LDS" oder über die Anlage gesteuert. Eine ausführliche Beschreibung der Bediensoftware finden Sie in den beigefügten Unterlagen "FocusMonitor" und "CompactPowerMonitor". Die dort beschriebene Software ist in folgenden Punkten für das BCS erweitert worden:

14.1 Benutzerebenen

Ab Version 2.9.034 ist die Laser Diagnose Software optional mit einer Benutzerebenen-Steuerung erhältlich. Es sind mehrere Benutzerebenen vorhanden, die über ein Passwort aktiviert werden. Damit können Sie die Bedienmöglichkeiten in der Software einschränken und so an die Anforderungen des Einsatzes anpassen. Folgende Benutzerebenen sind definiert:

Benutzerebene	Passwortschutz	Funktionszugriff
Operator (Op)	Nein	Stark eingeschränkt
Controller (Co)	Ja	Eingeschränkt
Expert (Ex)	Ja	Weitgehend uneingeschränkt
Professional (Pro)	Ja	Weitgehend uneingeschränkt

Tab. 14.1: Passwortschutz für Benutzerebenen

Beim Softwarestart können Sie die Benutzerebenen-Steuerung im Willkommensfenster aktivieren (Optionsfeld "Benutzerebene wechseln" anklicken, siehe Abb. 14.1). Wenn Sie diese Option nicht nutzen oder ein falsches Passwort eingeben, startet die Software automatisch mit der niedrigsten Berechtigungsstufe "Operator". Dies gilt auch beim Start durch eine Anlagensteuerung.

Abb. 14.1: Benutzerebene wechseln

Sie können die Benutzerebene auch im laufenden Betrieb wechseln (Menü "*Bearbeiten* → *Benutzerlevel ändern…*"). Auch hier erfolgt auf eine falsche oder fehlende Passworteingabe die Anmeldung als Operator. Die Benutzerebene "Operator" ist beispielsweise für den Einsatz in der Produktion bestimmt. Hier ist zwar die Ausführung von Skripten gestattet, um eine automatische Ablaufsteuerung zu ermöglichen, erweiterte Einstellungen der angeschlossenen Geräte oder manuelles Speichern der Messergebnisse sind jedoch nicht möglich.

Die Zuordnung der erlaubten Aktionen zur gewählten Benutzerebene können Sie Tab. 14.2 entnehmen.

- Op = Operator
- Co = Controller
- Ex = Expert
- Pro = Professional

Softwarefun	ktionen	Kein Gerät angeschlossen	Gerät angeschlossen	Messung	Geladene Messung
Datei	Neu	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro
	Öffnen	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro
	Schließen				Co, Ex, Pro
	Alle Dateien Schließen				Co, Ex, Pro
	Speichern			Co, Ex, Pro	Co, Ex, Pro
	Speichern unter			Co, Ex, Pro	Co, Ex, Pro
	Export				Ex, Pro
	Messeinstellungen laden		Co, Ex, Pro	Co, Ex, Pro	
	Messeinstellungen speichern		Co, Ex, Pro	Co, Ex, Pro	
	Protokoll		Co, Ex, Pro	Co, Ex, Pro	
	Drucken				Co, Ex, Pro
	Vorschau Drucken				Co, Ex, Pro
	Zuletzt geöffnete Dateien	Co. Ex. Pro	Co. Ex. Pro	Co. Ex. Pro	Co. Ex. Pro
	Ende	Co. Ex. Pro	Co. Ex. Pro	Co. Ex. Pro	Co. Ex. Pro
Bearbeiten	Kopieren				
	Ebene löschen				
	Alle Ebenen löschen				
	Benutzerlevel ändern	Co. Ex. Pro	Co. Ex. Pro	Co. Ex. Pro	Co. Ex. Pro
Messung		Co Ex Pro	Ex Pro	Ex Pro	Ex Pro
	Sensorparameter		Ex. Pro	Ex. Pro	,
	Einstellung: Strahlsuche		Ex, Pro	Ex, Pro	
	CCD Geräteinfo		LX, 110	LX, 110	
	CCD Finstellung				
	LOM - Justage				
	Einzelmessung		Co Ex Pro	Co Ex Pro	
	Kaustik		Co, Ex, Pro	Co Ex Pro	
	Start Justiermode		00, LX, 110	00, 2, 110	
	Optionon	Co Ex Bro	Co Ex Bro	Co Ex Pro	Co Ex Pro
Darstollung	Ealsobfarbon	CO, LX, FIO	CO, LX, FIO	Co, Ex, FIO	Co Ex Pro
Daistenung	Falschfarbon (acfiltort)			Co, Ex, FIO	Co Ex Pro
	Isomotrio			Co, Ex, FIO	Co Ex Pro
	Isometrie 2D			Co Ex Pro	Co Ex Pro
	liborsight (86%)			Co, Ex, FIO	Co Ex Pro
	Übersicht (2 Moment)			Co, Ex, FIO	Co Ex Pro
	Koustik			Co, Ex, FIO	Co Ex Pro
	Rauslik			CO, LX, FIO	00, LX, FI0
	Symmetriopröfung			Co Ex Bro	
	Symmetheprurung			Co, Ex, FIO	Co, Ex, FIO
	Variable Schnitte			Co, Ex, FIO	Co, Ex, FIO
	Graphiasha Übersisht			Co, Ex, FIO	Co, Ex, FIO
				C0, EX, F10	Co, Ex, FIO
	Systemstatus	Co Ex Bro			Co Ex Pro
	Evaluerungsparameter	CO, EX, PIO	Co, EX, PIO	Co, EX, Pro	Co, EX, PIO
		CO, EX, PIO	Co, EX, PIO	CO, EX, PIO	Co, EX, PIO
		C0, EX, P10	CO, EX, PIO	CO, EX, PIO	C0, EX, P10
	Position		CO, EX, Pro	CO, EX, Pro	
Kammun					
kation	Erojo Kommunikatian	Co Ex Pro	Co Ex Pro		Co Ex Pro
			Co. Ex. Pro		Co. Ex. Pro
		Co, Ex, Pro	Co, EX, Pro	Co, EX, Pro	Co, EX, Pro
Skript		Up, Co, Ex, Pro	CO, EX, Pro	CO, EX, Pro	CO, EX, Pro
	Autilisten	Co, Ex, Pro	CO, EX, Pro	CO, EX, Pro	CO, EX, Pro
	Python	Up, Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro
Hilfe	Aktivierung	Op, Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro
	LaserDiagnoseSoftware	Op, Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro	Co, Ex, Pro

 Tab. 14.2:
 Benutzerzugriff auf Softwarefunktionen

14.2 Bewertungsfunktion

Die Bewertungsfunktion der LDS bietet Ihnen verschiedene Parameter zum Bewerten der gemessenen Leistungsdichteverteilungen. Diese werden in der Evaluierungsdatei (FocusCaustik.eval) gespeichert und können auch einzeln deaktiviert werden.

Parameter	Bedeutung
StandardFit	Abweichung des Fits an die Kaustik (%)
PowerStable	Stabilität der anliegenden Laserleistung (W)
AstigmatismRatio	Astigmatische Differenz (%/zr)
RadiusX	Fokusradius X (mm)
RadiusY	Fokusradius Y (mm)
Radius	Kombinierter Fokusradius (mm)
PositionX	Fokusposition X (mm)
PositionY	Fokusposition Y (mm)
PositionZ	Fokusposition Z (mm)
KValue	К
KValueX	Kx
KValueY	Ку
LaserMinPower	Minimal zulässige Laserleistung (W)
LaserMaxPower	Maximal zulässige Laserleistung (W)
LaserMeanPower	Mittlere Laserleistung (W)
BeamParameterProduct	Strahlparameterprodukt (mm*mrad)
MSquare	M ²
MSquareX	M ² x
MSquareY	M ² y
BeamDirection	Kombinierte Strahlrichtung (°)
BeamDirectionX	Strahlrichtung zur x-Achse (°)
BeamDirectionY	Strahlrichtung zur y-Achse (°)
RayleightLength	Rayleigh-Länge (mm)
Divergence	Divergenz (mrad)

Folgende Parameter können für eine Messung automatisiert bewertet werden:

Tab. 14.3: Bewertungsparameter

Zusätzlich können Sie ein Überschreiten von Fehlergrenzen signalisieren und auch beim Annähern an die Grenzen eine Warnmeldung ausgeben. Dazu sind in die Eval-Datei zusätzlich Warngrenzen eingefügt (MaxWarnValue).

Beim BCS werden die Messergebnisse ausschließlich als gut oder schlecht bewertet, also ohne den Warnbereich. Deshalb müssen Sie die Minimal- und Maximalwerte für Warn- und Fehlergrenzen gleich einstellen, sonst können Unstimmigkeiten innerhalb der Auswertung auftreten (siehe Tab. 14.4).

Zum Editieren der Grenzwerte öffnen Sie die Datei "FocusCaustic.eval" mit einem Editor, der Zeilenumbrüche umsetzt (z. B. Notepad++). Jede Zeile in der Datei konfiguriert einen Bewertungsparameter.

Die Zeilen sind wie in Tab. 14.4 dargestellt aufgebaut. Die fett umrahmten Werte können zur Konfiguration der Evaluierung angepasst werden, die übrigen Werte haben keinen Einfluss auf die Bewertung einer Messung mit dem BCS oder werden ausschließlich für den automatisierten Auslesevorgang verwendet.

Parametername	Wert	Beschreibung
bcp:ExtendedParameter		
autocalculateWarn=	"false"	
enabled=	"true"	Aktivierung des Parameters
formatter=	"%.2f"	
id=	"StandardFit"	Bezeichnung des Parameters
maxValue=	"5.00"	Maximalwert (Fehlergrenze)
maxWarnValue=	"5.00"	Maximalwert (Warngrenze)
minValue=	"0.10"	Minimalwert (Fehlergrenze)
minWarnValue=	"0.10"	Minimalwert (Warngrenze)
name=	"Standard Fit"	Bezeichnung des Parameters
unit=	"%"	Einheit
value=	"3.478677"	Wert aus der Messung
visible=	"true"	

Tab. 14.4:Parameter Fehlergrenzen/Warngrenzen

Die Daten werden nach der Messung skriptgesteuert automatisch ausgewertet und das Ergebnis über den Profibus übermittelt.

14.3 Speicherort der Messwerte

Eine Messung im automatisierten Programmablauf mit dem BCS speichert die Messwerte in folgenden Dateien:

Die Kaustik-Messdaten im ".foc"-Format. Dateiname: "FocusCaustic_*Nel v_Qsr ex_Xek_Wyr hi _Qmyxi 2*oc"

Bei reiner Leistungsmessung wird zu jeder Messung eine eigene Text-Datei angelegt, in der sowohl jede zur Mittelung herangezogene Einzelmessung inkl. Datum und Uhrzeit als auch der daraus gebildete Durchschnitt als belastbarer Messwert abgelegt sind.

Dateiname: "LaserPower_Nel v_Qsr ex_Xek_Wkyr hi _Qmyxi cW oyr hi .txt"

14.4 Automatischer Skriptablauf

Die LaserDiagnoseSoftware bietet die Möglichkeit, Skripte zu bearbeiten und automatisch auszuführen. Unterstützt werden folgende Skriptsprachen:

- Primes-Skriptsprache
- seit LDS-Version 2.9.035 Python (in der Version 2.6), erweitert um einen Primes-spezifischen Befehlssatz

Für einen automatischen Skriptablauf müssen Sie die Konfigurationsdatei *laserds.ini* im Installationsverzeichnis der Software entsprechend editieren.

Die LDS bietet einen eigenen Editor (Menü *Skript* \rightarrow *Editor*). Da die Konfigurationsdatei im ASCII-Format gehalten ist, können Sie diese auch mit einem externen Editor (z. B. Notepad++) bearbeiten.

Die Skripte selbst können Sie mit einem externen Editor erstellen und bearbeiten. Auch diese sind im ASCII-Format gehalten.

Die Standard-Dateiendung für Skripte der Primessprache ist *.txt, die der Python-Versionen *.py.

14.4.1 Konfigurationsdatei bearbeiten

Standardmäßig wird die LaserDiagnoseSoftware im Verzeichnis "C:\Programme\Primes\LDS v.xxx" installiert. Hier finden Sie auch die Konfigurationsdatei "*laserds.ini*".

Öffnen Sie die Datei "laserds.ini" und suchen Sie die Sektion "[Script]"

Wenn Sie Primes-Skript verwenden:

 Ergänzen Sie die Kommandozeile "Start file=" zum Aufruf des Skriptes um die Pfadangabe und die Parameter "/Run; Open Editor" (siehe Abb. 14.2). Mit "/Run" startet das Skript sofort nach Start der Software, mit "Open Editor" wird der LDS-interne Editor zur Anzeige des geladenen Skripts geöffnet.

Abb. 14.2: Primes-Skript editieren

Wenn Sie Python-Skript verwenden:

In der Kommandozeile "Start Pythonscript=" wird ohne zusätzliche Parameter der Pfad zur Skriptdatei angegeben (siehe Abb. 14.3).

[Interface]
Startup=0
[Script]
Start file=
Start Pythonscript=C:\LaserDiagnoseSoftware\pyscript\scriptsBCS\automaticscript.py
Script libdir=C:\laserdiagnosesoftware\lib
ThreadSavePython=0

Abb. 14.3: Python-Skript editieren

Die in Python geschriebenen Abläufe können auf selbsterstellte Bibliotheken zugreifen. Diese müssen im gleichen Verzeichnis wie das aufrufende Skript liegen oder sie müssen explizit innerhalb des Skripts beschrieben sein. Eine weitere Möglichkeit ist, sie in einem angegebenen Verzeichnis "libdir=" zu hinterlegen.

Beispiel:

Der Eintrag in der Zeile "Script libdir= ..." in Abb. 14.3 gibt den Pfad zum Bibliothekverzeichnis an, das von der LDS zu verwenden ist.

14.4.2 Globale Einstellungen

Einstellbare Parameter finden Sie in der Datei "GlobalSettings.py". Sie können diese anpassen, z. B. um die Einschwingzeit für eine Leistungsmessung zu ändern.

Die Datei befindet sich im lib-Verzeichnis der LaserDiagnoseSoftware. Den Pfad zu diesem Verzeichnis müssen Sie Ihrer Rechnerkonfiguration anpassen (Standardpfad

"C:\LaserDiagnoseSoftware\pyscript\lib").

Die Datei "GlobalSettings.py" können Sie mit einem beliebigen Texteditor bearbeiten. Beachten Sie dabei folgendes:

• Verwenden Sie keine Tabulatoren, beispielsweise zum Einrücken. Jeder Platzhalter oder Zeileneinschub

muss aus 4 Leerzeichen bestehen.

- Die Reihenfolge der Parameter in der Datei können Sie ändern.
- Kommentare können Sie zeilenweise einfügen. Jede Kommentarzeile muss mit einem "#"-Zeichen beginnen.

Im folgenden Beispiel werden die in dieser Datei festgehaltenen Parameter beschrieben. Die rot unterlegten und mit entsprechender Kommentarzeile versehenen Parameter sind für die Abläufe anderer Messaufgaben und Geräte bestimmt. Sie sind für den Einsatz des BCS ohne Bedeutung.

Beispiel:

#Global gültige Timeout-Vorgabe für Interaktionen mit der Anlage (z. B. maximale Wartezeit zur #Erkennung von Laserleistung); die Angabe erfolgt in s giWaitCounter = 100

#Anzahl der Leistungsmessungen über die bei der ausschließlichen Leistungsmessung #gemittelt wird; die Angabe erfolgt in Anzahl der gewünschten Messungen giPowerNumVals = 2

#unterhalb dieser gemessenen Laserleistung wird der Laser als ausgeschaltet erkannt ; die #Angabe erfolgt in W

giMaxPowerForLaserOff = 50.0

#Leistungsdifferenz zur Erkennung des Einschaltvorgangs des Lasers: ab dieser #Leistungsdifferenz zur Null-Leistung wird der Laser als eingeschaltet erkannt; die Angabe #erfolgt in W giPowerDiffernceForLaserOn = 40.0

```
#für BCS-Automatikablauf nicht relevant giPlaneListForFastMeasurement = [7, 11]
```

#für BCS-Automatikablauf nicht relevant giFocusShiftPowerValues = [10, 20]

#für BCS-Automatikablauf nicht relevant giProtectionGlassPowerValues = [10, 100]

#für BCS-Automatikablauf nicht relevant giSaveZPosFibreMeasurement = 110000

#für BCS-Automatikablauf nicht relevant giSaveZPosProcessMeasurement = 85000

#Thermalisierungszeit für den Einschwingvorgang der Leistungsmessung; nach Erkennen von #anliegender Laserleistung wird diese Zeit bis zur eigentlichen Messung gewartet; die Dauer #bezieht sich auf die ausschließliche Leistungsmessung und die Komplettvermessung der #Kaustik; die Angabe erfolgt in s

giThermalizationTime = 10

#Aktivierung von Debugausgaben während des Messablaufs; dieser Parameter ist für den #Produktiveinsatz des BCS nicht relevant; Angabe erfolgt binär: $0 \rightarrow$ keine Ausgabe der #Debugmeldung, $1 \rightarrow$ Ausgabe der Debugmeldungen

giDebug = 0

#für BCS-Automatikablauf nicht relevant giDebugEval = 1 giDebugEvalValue = 2

15 Ausbau aus der Laseranlage

- 1. Schalten Sie zuerst die Laserquelle aus.
- 2. Schließen Sie den Verschluss.
- 3. Schalten Sie die Spannungsversorgung aus.
- 4. Stellen Sie sicher, dass alle bewegliche Teile, z. B. Roboterarme, etc. im Stillstand sind und dass diese nicht unbeabsichtigt in Bewegung gebracht werden können.
- 5. Entfernen Sie alle Verbindungskabel und die Versorgungsschläuche.
- 6. Bauen Sie das Gerät aus.
- 7. Entleeren Sie den Kühlkreis des Gerätes vollständig und schließen Sie die Anschlüsse mit den mitgelieferten Verschlussstopfen.

16 Wartung

Für Service, Wartung und Kalibrierung empfehlen wir, das BCS in regelmäßigen Abständen (12-24 Monate) an den Hersteller zu senden.

17 Maßnahmen zur Produktentsorgung

PRIMES ist im Rahmen des Elektro-Elektronik-Gesetzes (Elektro-G) verpflichtet, nach dem August 2005 gefertigte PRIMES-Messgeräte kostenlos zu entsorgen.

PRIMES ist bei der Stiftung Elektro-Altgeräte-Register ("EAR") als Hersteller unter der Nummer WEEE-Reg.-Nr. DE65549202 registriert.

Sie können zu entsorgende PRIMES-Messgeräte zur kostenfreien Entsorgung an unsere Adresse senden:

PRIMES GmbH Max-Planck-Str. 2 D-64319 Pfungstadt Deutschland

18 Abmessungen

19 Technische Daten

Тур		BCS-120
Versorgungsdaten		
Versorgungsspannung, DC Maximale Stromaufnahme	V A	$\begin{array}{c} 24\pm5\ \%\\ 5\end{array}$
Kühlkreis Kühlwasserdurchfluss, min. Kühlwassertemperatur T _{in} ¹⁾	l/kW –	0,8 Taupunkt < T _{in} < 30 °C
Vordruck, typ. Maximaler Temperaturgradient	°C/min	2 4 < 0,5
Pressluft (wasser- und ölfrei) Minimaler Druck Maximaler Druck	bar bar	4 8
Schutzgas (wasser- und ölfrei) Maximaler Druck	bar	He, N ₂ , Ar 0,5
Kenndaten Messung		
Fokusdurchmesser (FM) Min. Max.	µm mm	150 5
Wellenlängenbereich	μm	10,6
Messbereich, unterhalb der Geräteoberseite Min. Max.	mm mm	10 125
Leistungsdichte im Fokus bei 10,6 µm, max.	MW/cm ²	20
Leistung (CPM) Min. Max.	kW kW	0,5 9
Max. Leistungsdichte im Peak Strahldurchmesser < 10 mm Strahldurchmesser 10 30 mm Strahldurchmesser 30 55 mm	kW/cm ² kW/cm ² kW/cm ² kW/cm ²	- 10 5 0,5
Max. mittlere Leistungsdichte Strahldurchmesser < 10 mm Strahldurchmesser 10 30 mm Strahldurchmesser 30 55 mm	kW/cm ² kW/cm ² kW/cm ² kW/cm ²	- 5 5 0,5
Im Abstand unterhalb der Geräteoberseite	mm	360
Messgenauigkeit ²⁾ Leistung Fokuslage Fokusradius Fernfelddivergenz Rayleighlänge Strahlqualität (M ²)	% µm % % %	±3 100 + 10 % von z _R 5 5 10 10

¹⁾ Soll außerhalb dieser Spezifikation gearbeitet werden, bitte vorher mit PRIMES Rücksprache halten.

²⁾ Neben den systembedingten Messunsicherheiten ist die Messsituation (Signal/Rauschverhältnis; zeitliche Stabilität des Laserstrahls stark ausschlaggebend für die absolute Messgenauigkeit und die Wiederholpräzision. Die situationsbedingte Messunsicherheit kann mit Hilfe der in der Kaustikbewertung errechneten Standardabweichung vom Hyperbolischen Fit bestimmt werden. Dieser Wert (multipliziert mit 3 für 93,3 % Sicherheit) muss als additiver Beitrag zur Messunsicherheit hinzugerechnet werden.

Tup		PCS-120
ιγp		BC3-120
Wiederholgenauigkeit ¹⁾ Leistung Fokuslage Fokusradius Fernfelddivergenz Rayleighlänge Strahlqualität (M ²)	% - % % %	±1,5 5 % von z _R 3 3 3 3 3 3
Messdauer FM bei 64x64 Pixeln Kaustik (21 Ebenen) Leistungsmessung CPM	S S	180 10
Verfahrbereich der z-Achse	mm	120
Kommunikation		
Ethernet Profibus-Anschluss PRIMES-Bus-Anschluss (RS485) Sicherheitskreis (Interlock)	Mbit - - -	100 2x (In/Out) 1x Potentialfrei
Umgebungsbedingungen		
Gebrauchstemperaturbereich Lagerungstemperaturbereich	°C ℃	+15 +40 +5 +50
Referenztemperatur	°C	+22
Zulässige relative Luftfeuchte	%	80
Maße und Gewichte		
L x B x H (inklusive Schwenkbereich des Verschlusses, ohne Kabel und Stecker)	mm	561 x 242 x 566
Gewicht, ca.	kg	50
Schutz		
Schutzart	-	IP52
Schutzklasse	-	

¹⁾ Soll außerhalb dieser Spezifikation gearbeitet werden, bitte vorher mit PRIMES Rücksprache halten.

²⁾ Neben den systembedingten Messunsicherheiten ist die Messsituation (Signal/Rauschverhältnis; zeitliche Stabilität des Laserstrahls stark ausschlaggebend für die absolute Messgenauigkeit und die Wiederholpräzision. Die situationsbedingte Messunsicherheit kann mit Hilfe der in der Kaustikbewertung errechneten Standardabweichung vom Hyperbolischen Fit bestimmt werden. Dieser Wert (multipliziert mit 3 für 93,3 % Sicherheit) muss als additiver Beitrag zur Messunsicherheit hinzugerechnet werden.

20 Einbauerklärung

Original-Einbauerklärung für unvollständige Maschinen

nach der EG-Richtlinie Maschinen 2006/42/EG, Anhang II B

Der Hersteller: PRIMES GmbH, Max-Planck-Straße 2, 64319 Pfungstadt erklärt hiermit, dass die unvollständige Maschine mit der Bezeichnung:

BeamControlSystem (BCS)

Typen: BCS

die Bestimmungen der folgenden einschlägigen EG-Richtlinien erfüllt:

 Maschinenrichtlinie 2006/42/EG

 EMV-Richtlinie 2014/30/EU
 Niederspannungsrichtlinie 2014/35/EU
 RoHS-Richtlinie 2011/65/EU zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten
 Richtlinie 2004/22/EG über Messgeräte

> Bevollmächtigter für die Dokumentation: PRIMES GmbH, Max-Planck-Str. 2, 64319 Pfungstadt

Die zur unvollständigen Maschine gehörende technische Dokumentation nach Anhang VII Teil B der Maschinenrichtlinie wurde erstellt. Der Hersteller verpflichtet sich, diese technischen Unterlagen der zuständigen nationalen Behörde bei begründetem Verlangen innerhalb einer angemessenen Zeit elektronisch zu übermitteln.

Diese unvollständige Maschine ist für den Einbau in einer Laseranlage bestimmt. Die Inbetriebnahme ist solange untersagt, bis sichergestellt wurde, dass die gesamte Maschine, in die diese unvollständige Maschine eingebaut ist, den Bestimmungen der EG-Richtlinie 2006/42/EG und des Laser-Strahlungsschutzes u. a. DIN EN ISO 12254, DIN EN 60825 und TROS entspricht.

Pfungstadt, 26.April 2017

Dr. Reinhard Kramer, Geschäftsführer

21 Anhang

21.1 LDS-Installation für den automatischen Messbetrieb

Die LaserDiagnoseSoftware (LDS) kann für einen automatischen Messbetrieb mit dem BCS konfiguriert werden. Die folgende Beschreibung setzt eine Ethernetverbindung zwischen dem BCS und dem PC voraus.

Das Setup erlaubt jedem Benutzer vollen Zugriff, so dass keine Administratorrechte notwendig sind. Sollten die Zugriffsrechte später geändert werden, stellen Sie bitte sicher, dass die Software weiterhin vollen Zugriff hat (ansonsten werden unter Windows[®] 7 die geänderten Dateien ohne Warnmeldung in virtuellen Verzeichnissen von Windows gespeichert und haben dann keinen Einfluss auf die Software).

Erforderliches Betriebssystem: Windows® 7 (64 bit) oder Windows® XP

Bei Windows® XP benennen Sie bitte das Verzeichnis "Programme (x86)" in "Programme" um.

21.1.1 Software installieren

Die Installation der Software ist menügesteuert und erfolgt vom beigefügten Datenträger. Bitte starten Sie die Installation durch einen Doppelklick auf die Datei

"Setup LDS v.2.97.exe"

und folgen Sie den Anweisungen auf dem Bildschirm.

🗊 Setup - Primes Laser Diagn	ose Software
	Welcome to the Primes Laser Diagnose Software Setup Wizard
	This will install LDS on your computer.
	It is recommended that you close all other applications before continuing.
	Click Next to continue, or Cancel to exit Setup.
	Next > Cancel

Abb. 21.1: Setup-Fenster 1

Abb. 21.2: Setup-Fenster 2

Abb. 21.3: Setup-Fenster 3

Abb. 21.4: Setup-Fenster 4

Abb. 21.5: Setup-Fenster 5

Abb. 21.6: Setup-Fenster 6

Abb. 21.7: Setup-Fenster 7

Abb. 21.8: Setup-Fenster 8

Abb. 21.9: Setup-Fenster 9

Abb. 21.10: Setup-Fenster 10

Setup - Primes Laser Diagnose Software Visual Studio Reditributable Do you want to install the DLLs now?		
To install the Visual Studio Reditributable DLLs, please dick Next.		
	Visual Studio Re sind für eine kor der LDS nötig.	editributable-DLLs rekte Ausführung
< <u>B</u> ack	lext > Cancel	

Abb. 21.11: Setup-Fenster 11

Abb. 21.12: Setup-Fenster 12

21.1.2 LDS für die Gerätekommunikation konfigurieren

Nach dem ersten Start der LDS ist die Standardkonfiguration aktualisiert.

	PRIMES Laser diagnostic Program - Willkommen		
	Was möchten Sie tun??		
	O Messung durchführen (Messgerät muss angeschlossen sein)		
、	O Vorhandene Messergebnisse darstellen (kein Messgerät notwendig)		
	Benutzerebene wechseln		
	Copyright (c) Primes GmbH		
	1996-2016 PRIMES		
	Cancel		

Abb. 21.13: Startfenster der LDS

- 1. Wählen Sie "Benutzerebene wechseln" (siehe Abb. 21.13), geben Sie das Passwort für die Benutzerebene *Expert* ein und Klicken Sie auf *OK*.
- 2. Wählen Sie das Menü Kommunikation>>Freie Kommunikation.

	Freie Kommunikation	×	
тср 🛁	Mode Seriell • TCP C USB-To-Seriell V Zweite IP V Parity Prim	es Geräte Suchen	
	Serielle Schnittstelle Von 64 An 161 stelay 01000	Senden	
	Von 64 An 168 Init110	Senden	
	Von 64 An 113 jql HexCode: ComPort:	Testen	
		Cruithur	
IP-Adresse	HP; 192. 168. 16 . 80 Port 6001 Veroinden Schieben	IP Zuweisen	
	Befehl	enden	
	IP: 192.168.116.82 Port: 6001		
	Befehl Ser	iden	
	Bus monitor		
	Messdaten anzeigen Löschen Copy 3chließer 🗸 Bus-Pr Debuginfo anzeigen	otokoll schreiben Bus-Pro	tokoll

Abb. 21.14: Dialogfenster Freie Kommunikation

3. Wählen Sie den Mode *TCP* aus (siehe Abb. 21.14), aktivieren Sie *Bus-Protokoll schreiben* (rechte untere Ecke) und geben Sie die IP-Adresse ein (Standardadresse ist 192.168.116.80, bitte prüfen Sie

die Angaben auf dem Typenschild).

- 4. Klicken Sie auf Verbinden.
- 5. Wenn das BCS mit Ihrem Computer verbunden ist, erscheint im Busmonitor die Bestätigung "CON-NECTED to x.x.x.x" (siehe Abb. 21.15). Klicken Sie auf *Speichern*.

Abb. 21.15: Konfiguration speichern

Ein Klick auf *Primes Geräte suchen* (siehe Abb. 21.16) startet einen Suchlauf nach angeschlossenen Primes-Geräten. Wird ein Gerät gefunden, werden die Dialogfenster für die Messeinstellungen geöffnet.

Abb. 21.16: Schaltfläche für die Gerätesuche

21.2 Voreinstellungen für die Messprogramme

Das Skript bietet vier Messprogrammme. Für die Programme 2-4 sind verschiedene Voreinstellungen erforderlich.

Programm	Beschreibung	Erforderliche Dateien
1	Nur Leistung messen	Keine
2	Gesamte Fokuskaustik messen	Voreinstellungen in <i>FocusCaustic1.ptx</i> Bewertung in <i>FocusCaustic1.eval</i>
3*)	 a) Eine Ebene von einer bestehenden Mes- sung pr üfen (fast caustic) 	Voreinstellungen in <i>FastCaustic.ptx</i> Bewertung in <i>FastCaustic.eval</i> Messvorgaben in <i>FastCaustic.foc</i>
	b) Gesamte Fokuskaustik wie Programm 2 mit anderen Parametern messen	Voreinstellungen FocusCaustic2.ptx Bewertung in FocusCaustic2.eval
4	Einzelne Ebene messen	Voreinstellungen in OnePlane.ptx

^{*)} a oder b je nach Kundenwusch

1. Wenn Sie eine Messung nach ISO 11146 durchgeführt haben gehen Sie ins Menu *Darstellung>>Kaustik* und klicken Sie auf die Schaltfläche *Bewertung...*

Sind in dem erscheinenden Bewertungsfenster alle Kriterien mit einem grünen Häkchen gekennzeichnet, speichern Sie die Messung als "Master" für den automatisierten Betrieb.

2. Wählen Sie den Menüpunkt Datei>>Messeinstellungen speichern (sieheAbb. 21.17)

Abb. 21.17: Messeinstellungen speichern

3. Wählen Sie das Verzeichniss für die Skripte aus (hier c:\Program Files (x86)\Primes\LDS\scripts) und speichern Sie die Vorgabendateien mit den Dateinamen wie in Abb. 21.18 bis Abb. 21.20 dargestellt.

Speichern	unter		(m.)		x
Speichem	Scripts	•	🗢 🗈 💣		
Name	*		Änderungsda	atum	Тур
schutzg	lastest.ptx		29.09.2011 09	:00	Primes
•	III				۴
Dateiname:	FocusCaustic			Speid	hem
Dateityp:	PRIMES (*.ptx)		-	Abbre	chen

Abb. 21.18: Dateiname FocusCaustic.ptx

Speichern unter		X
Speichem 🔒 scripts	▼ = 🔁 🗳 💌	
Name	Änderungsdatum	Тур
FocusCaustic.ptx	10.01.2012 09:55	Primes
schutzglastest.ptx	29.09.2011 09:00	Primes
<		Þ
Dateiname: FastCaustic.ptx	Spei	chem
Dateityp: PRIMES (*.ptx)	Abbre	echen

Abb. 21.19: Dateiname FastCaustic.ptx

Speichern unter					X
Speichem 🏼 🔒 scri	pts	•	+ 🗈 💣		
Name	*		Änderungsd	atum	Тур
FastCaustic.ptx			10.01.2012 09	9:56	Primes
FocusCaustic.p	tx		10.01.2012 09	9:55	Primes
schutzglastest.p	otx		29.09.2011 09	9:00	Primes
•					+
Dateiname: OnePl	anelptx			Speid	hem
Dateityp: PRIM	ES (*.ptx)		•	Abbre	chen

Abb. 21.20: Dateiname OnePlane.ptx

Die Vorgabendateien von Programm 2 und Programm 3b sind, abgesehen vom Dateinamen, gleich. Programm 4 benutzt die Konfiguration für die Ebene 0 aus der ptx-Datei.

Grundsätzlich können alle drei unterschiedlichen ptx-Dateien aus einer (belastbaren) Messung erzeugt werden.

Speichern Sie die Messung auch als "Master".foc-Datei für das Programm FastCaustic (siehe Abb. 21.21); dies ist nicht nötig für andere komplette Kaustikmessungen.

Abb. 21.21: Menu Messeinstellungen speichern

Speicher	n unter			×
Speichem	🔒 scripts	•	← 🗈 💣 📰 ▾	
Name	*		Änderungsdatum	Тур
	Es wurden keine Such	ergebni	sse gefunden.	
•				,
Dateiname:	FastCaustic.foc			Speichem
Dateityp:	PRIMES (* foc)		•	Abbrechen

Abb. 21.22: Dateiname FastCaustic.foc

Schließen Sie nun die LDS, um die Konfigurationsdateien, insbesondere die "laserds.ini", bearbeiten zu können.

Mit der skriptgesteuerten LDS können Sie mehrere Strahlparameter vergleichen, um die Messung zu bewerten. Der Vergleich wird von Dateien mit der Erweiterung "*.eval" gesteuert. Eine dieser Dateien wird bei der Installation der LDS ins Script-Verzeichnis mitinstalliert (siehe Abb. 21.23).

- 1. Starten Sie den Windows[®] Explorer und öffnen Sie das Skript-Verzeichnis (c:\Program Files (x86)\ Primes\LDS v2.97\scripts).
- 2. Kopieren Sie die Datei "schutzglastest.eval" dreimal ins gleiche Verzeichnis.
- 3. Benennen Sie die drei Dateikopien folgendermaßen um:

FocusCaustic1.eval FastCaustic.eval oder FocusCaustic2.eval OnePlane.eval

C:\Program Files (x86)\Primes\LDS v2.97\scripts								
arbeiten Ansicht Extras ?								
ren 🔻 In Bibliothek aufnehmen 💌 Fre	igeben für 🔻 🛛 Brenne	n Neuer Ordner						
Name	Änderungsdatum	Тур	Größe					
automaticscript.py	14.12.2011 15:24	PY-Datei	3 KB					
BeamControls.xsd	04.08.2010 08:54	XML Schema file	3 KB					
I FastCaustic.ptx	10.01.2012 09:56	Primes LaserDiagn	16 KB					
FocusCaustic.ptx	10.01.2012 09:55	Primes LaserDiagn	16 KB					
schutzglastest.eval	19.01.2011 08:45	EVAL-Datei	7 KB					
schutzglastest.ptx	29.09.2011 09:00	Primes LaserDiagn	13 KB					
Selbsttest Schutzglas.py	29.09.2011 08:38	PY-Datei	1 KB					

Abb. 21.23: Skriptverzeichnis

Hinweise zur Konfiguration einer Bewertungsdatei finden Sie in "14.2 Bewertungsfunktion" auf Seite 39 und "21.5 Bewertungsparameter konfigurieren" auf Seite 64.

- 4. Öffnen Sie die Vorgabendatei OnePlane.ptx für das Programm 4 mit einem Editor.
- 5. Stellen Sie sicher, dass in Zeile 5 der Schlüssel "Startebene=" der Wert 0 hat (damit ist die Messebene definiert, ansonsten würde das Programm nicht korrekt ablaufen).

21.3 Initialisierungsdatei konfigurieren

Falls nicht bereits installiert, müssen Sie zunächst das für den automatischen Ablauf benötigte Skript in das richtige Verzeichnis kopieren.

- 1. Speichern Sie das Skript *automaticscript.py* in das Verzeichnis *Scripts* (*g*>*Tvskveq* "*Jnb w*⁺*H* <: , '*Tvnq i w*' *PHWz62=*; '*Wgvtnw*).
- 2. Öffnen Sie die Initialisierungsdatei "laserds.ini" mit einem Editor.
- 3. Tragen Sie die Datei automaticscript.py ein, wie in Abb. 21.25 (Zeile 170) dargestellt.

	C:\Program Files (x86)\Primes\LDS v2.97				- - f j
en	Ansicht Extras ?				
	🎒 Öffnen 🔻 Drucken Brennen	Neuer Ordner			
Ν	Jame	Änderungsdatum	Тур	Größe	
	📔 Examples	09.01.2012 13:28	Dateiordner		
]ib	09.01.2012 13:28	Dateiordner		
	📔 scripts	09.01.2012 13:28	Dateiordner		
	📔 system	09.01.2012 13:28	Dateiordner		
	器 BeamControls.xsd	04.08.2010 08:54	XML Schema file	3 KB	
	BM_BEAMFIND.TXT	13.10.1997 19:41	TXT-Datei	1 KB	
	BM_MONITOR.TXT	11.09.1998 12:39	TXT-Datei	1 KB	
	BM_single.txt	10.09.1998 16:40	TXT-Datei	1 KB	
	BS_BEAMFIND.TXT	19.09.2005 11:08	TXT-Datei	1 KB	
	BS_MONITOR.TXT	21.10.2004 16:28	TXT-Datei	1 KB	
	BS_single.txt	21.10.2004 16:27	TXT-Datei	1 KB	
[🗟 Config.dll	16.07.2010 13:10	Anwendungserwe	72 KB	
[🚳 FreeImage.dll	11.02.2007 15:51	Anwendungserwe	1.068 KB	
[🗟 glut32.dll	08.11.2001 02:27	Anwendungserwe	232 KB	
<u>, s</u>	LaserDiagnoseSoftware v2.97.exe	05.01.2012 09:22	Anwendung	2.356 KB	
	👔 laserds.ini	01.12.2011 11:10	Konfigurationsein	7 KB	
- 1	😼 10g4Cx_111C.au	23,11,2000 00;33	Anwendungserwe	1.940 ND	
[log4j.properties	30.03.2010 09:19	PROPERTIES-Datei	1 KB	
	🛃 logo.bmp	16.01.2004 11:11	Bitmap-Bild	30 KB	
	Primes Homepage	17.10.2008 15:44	Internetverknüpfu	1 KB	
[python26.dll	26.10.2009 08:24	Anwendungserwe	2.100 KB	
	h python26.zip	25.11.2009 15:34	ZIP-komprimierte	3.547 KB	
[unins000.dat	09.01.2012 13:28	DAT-Datei	17 KB	
Î	unins000.exe	09.01.2012 13:27	Anwendung	1.148 KB	
[🔌 xerces-c_2_8.dll	22.04.2008 09:53	Anwendungserwe	2.312 KB	

Abb. 21.24: Datei Laserds.ini

Abb. 21.25: Eintrag des Automatikskriptes

4. In Zeile 43 (siehe Abb. 21.26) können Sie einen beliebige Speicherpfad eingeben (die LDS muss Schreibberechtigung haben).

38	[File]
39	Default=
40	Beam Evaluation=\system\beamparams.eval
41	Protection Glass Beam Evaluation=\system\schutzglasstest.eval
42	Protection_Glass_Beam_Measurement=\system\schutzglasstest.ptx_
43	MSMI Save Path=MSMI Save Path=C:\BCS_Saves
44	MSMI Script Save Path=C:\Program Files (x86)\Primes\LDS v2.97\scripts
45	MSMI Selected Script=

Abb. 21.26: Speicherort-Eintrag

- 5. Speichern und schließen Sie die ini-Datei.
- 6. Starten Sie den Windows[®] Explorer und kopieren Sie die Datei *BeamControls.xsd* vom Skriptordner (siehe Abb. 21.23) in das Speicherverzeichnis (BCS_Saves)
- 7. Starten Sie die LDS.

21.4 Messprogramme konfigurieren

Vor dem automatische Messen müssen Sie in der Datei *GlobalSettings.py* (c:\Program Files (x86)\Primes\ LDS v2.97\lib) noch einige Umgebungsvariablen konfigurieren.

Abb. 21.27: Speicherort der Datei GlobalSettings.py

1. Öffnen Sie die Datei mit einem Editor (z. B. Notepad++, siehe Abb. 21.28)

C:\Program Files (x86)\Primes\LDS v2.97\lib\GlobalSettings.py - Notepad++ Datei Bearbeiten Suchen Ansicht Format Sprachen Einstellungen Makro : C 🚽 🗄 🖻 S C 💩 🖌 🖻 🌔 🤉 C 🕍 🏂 🔍 🤫 🖫 🔓 📄 Global Settings.py 1 #global time out counter for wait states giWaitCounter = 1502 #global number of power measurements for averaging 4 giPowerNumVals = 5 #maximum laser power for power off, 5 #the laser is off below this value 6 giMaxPowerForLaserOff = 0.0 7 8 giPowerDiffernceForLaserOn = 0.0 9 11 #array of planes for fast caustic measurement 12 giPlaneListForFastMeasurement = [5] 13 #array of power values for focus shift caustic 14 15 giFocusShiftPowerValues = [20, 100] 17 #array of power values for protection glass test giProtectionGlassPowerValues = [10, 100] 18 19 20 #save z position for fibre measurement giSaveZPosFibreMeasurement = 110000 21 22 #save z position for process measurement 24 σ iSaveZPosProcessMeasurement = 85000 25 26 #thermalisation wait time in s giThermalizationTime = 5 27 28 29 #enable debug messages 30 giDebug = 1 31 32 #enable debug messages giDebugEval = 1 33 giDebugEvalValue = 2 34

Abb. 21.28: Dateiinhalt der Datei GlobalSettings.py

Im Folgenden werden nur die für das BCS relevanten Parameter erläutert.

giWaitCounter (Zeile 2) ist eine global gültige Timeout-Vorgabe für Interaktionen mit der Anlage. Der Vorgabewert ist 150 s und in den meisten Fällen anwendbar.

giPowerNumVals (Zeile 4) setzt die Anzahl der Leistungsmessungen über die bei der ausschließlichen Leistungsmessung (Programm 1 MeasurePowerOnly) gemittelt wird. Praxisgerechte Werte liegen im Bereich 15-20. Der Vorgabewert ist 5, der für eine Fehlersuche geeignet ist (schnell aber ungenau).

Nach entsprechendem Signal erkennt das Skript automatisch, ob der Laser ein- oder ausgeschaltet ist. Beide Pegel können getrennt vorgegeben werden.

giMaxPowerForLaserOff (Zeile 7) gibt den Leistungspegel vor, bei dem das Programm nach einer Messung den Laser als "ausgeschaltet" erkennt.

giPowerDifferenceForLaserOn (Zeile 9) gibt die Leistungsdifferenz zur Null-Leistung vor, bei dem das Programm den Zustand des Lasers als "eingeschaltet" erkennt.

Beide Aktionen können wegen der Thermalisierung der Anlage mehrere Sekunden dauern. Die Wertangabe erfolgt in Watt. Ein praxisgerechter Wert ist 50. Der Vorgabewert 0.0 Watt ist nur für eine Fehlersuche ohne Laser geeignet.

giThermalizationTime (Zeile 27) Wartezeit in Sekunden vor Messbeginn, bis der CompactPowerMonitor als Bestandtteil des BCS thermalisiert ist. Ein praxisgerechter Wert liegt bei 60 – 90 Sekunden (oder stattdessen 5 Sekunden bei der Inbetriebnahme).

Das Programm FastCaustic bietet die Möglichkeit ausgewählte Ebenen der Fokusvermessung zu vermessen. Die Ebenen werden mit der Variablen *giPlaneListForFastMeasurement* gesetzt. Geben Sie die Ebenen ein, getrennt durch ein Komma und ein Leerzeichen(Eingabe-> [5, 7] für die Ebenen 5 und 7). Eine mögliche Anwendung wäre z. B. eine oder zwei Ebenen der Masterkaustik nochmal zu vermessen und die Standardabweichung zu ermitteln (Zeile 12).

2. Nachdem Sie die Variablen Ihrer Anwendung angepasst haben, speichern und schließen Sie die Datei *GlobalSettings.py*.

21.5 Bewertungsparameter konfigurieren

Dieses Kapitel beschreibt die Verwendung einer Bewertungsdatei (*.eval) im automatischen Messbetrieb.

1. Öffnen Sie das Skriptverzeichnis (c:\Program Files(x86)\Primes\LDS v2.97\scripts).

rbeiten	Ansicht Extras ?			
en 🔻	In Bibliothek aufnehmen 🔻	Freigeben für 🔻 🛛 Brenn	en Neuer Ordner	
Name	^	Änderungsdatum	Тур	Größe
au	tomaticscript.py	14.12.2011 15:24	PY-Datei	3 KB
品 Be	amControls.xsd	04.08.2010 08:54	XML Schema file	3 KB
🔶 Fas	stCaustic.ptx	10.01.2012 09:56	Primes LaserDiagn	16 KB
🔷 Fo	cusCaustic.ptx	10.01.2012 09:55	Primes LaserDiagn	16 KB
sch	hutzglastest.eval	19.01.2011 08:45	EVAL-Datei	7 KB
🔷 scł	hutzglastest.ptx	29.09.2011 09:00	Primes LaserDiagn	13 KB
Se	bsttest Schutzglas.py	29.09.2011 08:38	PY-Datei	1 KB

Abb. 21.29: Das Skriptverzeichnis

- 2. Kopieren Sie die Datei "Schutzglastest.eval" zweimal ins gleiche Verzeichnis.
- Benennen Sie die Dateikopien um in FocusCaustic.eval und FastCaustic.eval.
- 4. Starten Sie das Programm *EvalEditor.exe* (c:\Program Files(x86)\Primes\LDS v2.97).
- 5. Laden Sie die Datei *FastCaustic.eval* wie in Abb. 21.30 dargestellt.

MainWindow	
Load Save	
ID Name Unit Enable Minimum Minimum Warr Value Maximum Wari Maximum	
10 Marine Cink Extended Marine Verdended Packmark Marine Unit control Sucher in: Extended Extended<	

Abb. 21.30: Datei FastCaustic.eval

In Abb. 21.31 wird eine mögliche Konfiguration der Bewertungsdatei gezeigt.

MainWindow									
Load Save About		•	6 - 10						
ID	Name	Unit	Enable	Minimum	Minimum Warn	Value	Maximum Warn	Maximum	A
StandardFit	Standard Fit	%		0,0000 🗬	0,2000 👻	3.4787	4,0000 💌	6,0000	
PowerStable	Power Stable	W		100,0000 🔹	-50,0000	0.0000	50,0000 💌	100,0000	
AstigmatismRatio	Astigmatism Ratio	%		0,0000 🗬	0,0000 🗬	0.0328	0,5000 🗬	1,0000	
RadiusX	Focus Radius X	mm		0,1400 🔹	0,1400 🗬	0.0333	0,1500 🗬	0,1600	
RadiusY	Focus Radius Y	mm		0,1400 🔹	0,1400 🗬	0.0320	0,1500 💌	0,1600	
Radius	Focus Radius	mm		0,1400 🔹	0,1400 🗬	0.0386	0,1500	0,1600	
PositionX	Focus Position X	mm		-3,0000 🔹	-1,0000 🗬	0.0207	1,0000 👻	3,0000 🚔	
PositionY	Focus Position Y	mm		-3,0000 🔹	-1,0000 🗬	0.0404	1,0000 👻	3,0000 🚔	
PositionZ	Focus Position Z	mm		75,0000 🚔	80,0000 🚔	82.3315	90,0000 🗬	95,0000	
KValue	KValue			0,0200 🚔	0,0200 🚔	0.6362	0,0400 🚔	0,0500 🚔	
KValueX	KValue X			0,5000 🚔	0,6700 🚔	0.8581	1,0000 🗬	1,0000 🚔	
KValueY	KValue Y			0,5000 🚔	0,6700 🚔	0.9006	1,0000 🗬	1,0000 🚔	=
LaserMinPower	Caustic Min Power	W		0,0000 🚔	0,0000 🚔	0.0000	100,0000 🚔	300,0000	
LaserMaxPower	Caustic Max Power	W		0,0000 🚔	0,0000 🚔	0.0000	750,0000 🚔	800,0000	
LaserMeanPower	Caustic Mean Power	W		0,0000 🚔	50,0000	0.0000	7500,0000 💽	8000,0000	
BeamParameterProduct	BPP			9,0000 🚔	10,0000	0.5324	14.0000 🚍	15,0000 🚔	Mortopoor
MSquare	M ²			30,0000 🚔	32,0000	1.5719	40,0000	* 39,7000	Dickropanz
MSquareX	M ² X			1,0000 💂	1,0000 🚔	1.5719	1,5000	2,0000 🗮	Diskiepariz
MSquareY	M ² Y			1,0000 🚔	1,0000		1,5000 🗨	2,0000	
BeamDirection	BeamDirection	•		0,0000 🚔	0,0000	0.3610	2,0000	3,0000	
BeamDirectionX	BeamDirection X	•		0,0000 🚔	0,0000	0.3610	2,0000	3,0000	
BeamDirectionY	BeamDirection Y	•		0,0000 🚔	0,0000 🚍	0.3610	2,0000 💌	3,0000	
RayleightLength	Rayleigh Length	mm		1,6000 💽	1,7000 🗬	2.8034	1,8000 💌	2,0000	
Divergence	Divergence	mrad		150,0000	160,0000 🗬	10.0000	175,0000 🗬	185,0000	•
Parameter un	nbenennen	"maxWarnVa	ai e" using ipi	ator "Greater"	Obere und	untere G	arenzwerte ä	ndern	
		Aktiviere	en/Deal	ktivieren]				

Abb. 21.31: Hauptfenster des EvaluationEditor

Name

Sie können den Namen der Parameter ändern. Dre gewählte Name wird in der LaserDiagnoseSoftware (LDS) angezeigt.

Aktivieren

Sie können die benötigten Parameter auswählen.

Minimum/Maximum

Sie können die oberen und unteren Grenzwerte zu jedem gewählten Parameter eingeben.

Minimum Warn/Maximum Warn

Sie können die Spalten "Minimum Warn" und "Maximum Warn" als Warnpegel bei der Bewertung nutzen, da im BCS selbst keine Warnfunktion vorhanden ist. Deshalb sollten die Wertepaare in den blauen Umrahmungen in Abb. 21.31 gleich sein.

6. Speichern Sie die Einstellungen nach der Eingabe.

21.5.1 Bewertungsdatei anzeigen

Bei jeder Messung werden bestimmte, mit einem Zeitstempel versehene Dateien gespeichert.

Beispiel:

- FastCaustic _2011_12_16 11_17_58.foc
- FastCaustic_2011_12_16 11_17_58.eval
- FastCaustic_2011_12_16 11_17_58.ptx
- FastCaustic_2011_12_16 11_17_58.txt
- 1. Starten Sie die LDS und öffnen Sie die aktuelle *.foc-Datei .
- 2. Öffnen Sie das Menu $Darstellung \rightarrow Evaluierungsparameter...$
- 3. Laden Sie die entsprechende *.eval-Datei.

		Min	Warn	Ist	Warn	Max	
-	0 [%]	0.00	0.50		3.00	5.00	
	Power Stable [W]	-100	-50		50	100	
	Astigmatism Ratio [%]	0.00	0.00		0.50	1.00	
	Focus Radius X [mm]	0.0100	0.0300		0.0500	0.1000	
	Focus Radius Y [mm]	0.0100	0.0300		0.0500	0.1000	
~	Focus Radius (mm)	0.0015	0.0017	0.0198	0.0180	0.0190	
~	Focus Position X (mm)	-1.200	-1.100	0.090	1.100	1.200	
~	Focus Position Y (mm)	-4.200	-4.100	0.012	4.100	4.200	
~	Focus Position Z (mm)	140.000	150.000	155.470	160.000	165.000	
	KValue	0.50	0.67		1.00	1.00	
	KValue X	0.50	0.67		1.00	1.00	
	KValue Y	0.50	0.67		1.00	1.00	
	Caustic Min Power (M)	50	100		10000	10000	
	Caustic Max Power (W)	0	0		7500	8000	
~	Caustic Mean Power (W)	0	0	0	7500	8000	
	BPP	0.200	0.250		0.750	0.700	
~	M²	1.00	1.00	1.04	1.10	1.15	
	M ^a X	1.00	1.00		1.40	1.60	
	M ^a Y	1.00	1.00		1.50	2.00	
	BeamDirection (*)	0.00	0.00		2.00	3.00	
	BeamDirection X [*]	0.00	0.00		2.00	3.00	
	BeamDirection Y (*)	0.00	0.00		2.00	3.00	
	Rayleigh Length (mm)	0.01	0.03		10.00	30.00	
	Divergence (mrad)	0.05	0.10		0.35	0.40	

Abb. 21.32: Bewertungsergebnisse

Parameter, die außerhalb des vorgegebenen Bereiches liegen sind rot markiert.

21.6 Automatischer Skriptbalauf

1. Starten Sie die LDS.

Das Startfenster der LDS ist deaktiviert und es erscheint sofort das Fenster des Skripteditors (das Skript läuft automatisch ab).

Während des Skriptablaufs sucht die Software noch nach angeschlossenen Geräten. Deshalb ist ein Zeitgeber (Sleeptimer) im Skript implementiert, der den Skriptstart verzögert. Wird während der vorgegebenen Zeit das Gerät gefunden, wird auf dem PROFIBUS das Signal "BCS idle" gesetzt und ein Messprogramm kann angefordert werden (die Gerätbereitschaft wird im unteren Teil des Editors angezeigt "Request0", siehe Abb. 21.33).

C:\Program Files (x86)\Primes\LDS v2.97\scripts\automaticscript.py	×
	÷
· · · · · · · · · · · · · · · · · · ·	•
Request 0	*
	-
	Þ
Line: 0	_//,

Abb. 21.33: Skripteditor

Wird während der vorgegebenen Zeit kein BCS gefunden, wird das Skript mit der Fehlermeldung "Kein FM gefunden" beendet (siehe Abb. 21.34).

C\Program Files (#6)\Prime\LD5 v297\script\automaticscript.py Br @		3
['Kein FM getunden', ''] Fatal script error 0		*
script finished	Þ	Ŧ
Line: 0		11.

Abb. 21.34: Fehlermeldung

In diesem Fall können Sie die Zeitverzögerung erhöhen.

- 1. Öffnen Sie die Datei *automaticscript.py* mit dem LDS-Editor (siehe Abb. 21.35).
- 2. Suchen Sie die Zeile "primes.WaitFor[22000]".
- 3. Erhöhen Sie den Wert von 22000 ms auf 60000 ms.
- 4. Speichern Sie das Skript und starten Sie die Software neu.

Abb. 21.35: Timer-Einstellung

Sollte auch während der längeren Wartezeit kein Gerät gefunden werden, gehen Sie folgendermaßen vor:

- 1. Prüfen Sie alle elektrische Anschlüsse
- 2. Prüfen Sie die Spannungsversorgung (Gerät eingeschaltet?)
- 3. Prüfen Sie den Verzeichnispfad der Software
- 4. Schließen Sie die Sofware und prüfen Sie alle in diesem Kapitel beschriebenen Schritte